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Abstract

This paper investigates the Tick Size Pilot Program with the goal of policy evaluation beyond average
treatment effect. Using a machine learning approach, I study policy effects stock-by-stock on three
major market quality measures, percentage quoted spread, consolidated displayed depth, and high-
low volatility. For each pilot stock, I test whether it receives significant treatment effects. I find
less than half of the pilot stocks in the treatment groups show positive significance for percentage
quoted spread; more than 80% shows positive significance for consolidated displayed depth; only
less than 5% shows significance for high-low volatility in either direction; the control group stocks
rarely show significance for all the outcomes, revealing no spillover effect at the individual level.
Tick constrainedness turns out to be useful in explaining differing significance only for percentage
quoted spread, but not for consolidated displayed depth. Percentage realized spread, though, appears
to explain for the both outcomes: the lower percentage realized spread, the more likely is the null
hypothesis rejected, indicating less-profitable stocks for liquidity providers in the pre-intervention
periods tend to receive significant effects in the post-intervention periods.
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1. Introduction

Randomized experiments are becoming a crucial instrument of empirical studies in economics and
finance. Over the past decade, randomized controlled trials (RCTs) have played a special role in policy
evaluations in a wide scope of subjects. Figure 1, drawn from Currie, Kleven, and Zwiers (2020), shows
a rising popularity of the use of RCT in the area of applied microeconomics. Since 2005, research papers
written in the RCT framework among the National Bureau of Economic Research (NBER) working
papers have been growing significantly, and a similar trend is also seen in the top-five academic journals
of economics.1

[ Figure 1 about here ]

The basic idea of RCT strategy for policy evaluation is the following. Taking policy intervention of
interest as treatment, a typical RCT carries individuals, firms or communities assigned to treatment and
control groups at random.2 In a well-designed case, average difference of outcome of interest between
treatment and control groups defines an unbiased estimator of average treatment effect (ATE), which
plays a central role in policy learning via RCT.3 As in cases of clinical trials, such RCT approaches are
widely believed to be the gold standard for effectiveness research, delivering “more credible” results on
policy problems.

Yet, there is voice of caution, a counterweight to the enthusiasm for the use of RCT to policy problems
(e.g., Deaton, 2019; Deaton and Cartwright, 2018; Heckman, 2008, 2020). Among many concerns raised
in economics is that ATE, for which RCTs are basically designed, might not be as useful as many believe
so. This point is recently highlighted in the RCT literature: “At best, an RCT yields an unbiased estimate,
but this property is of limited practical value” (Deaton and Cartwright, 2018, Abstract), and “Advocates
of randomization implicitly assume that certain mean differences in outcomes are invariably the objects
of interest in performing an [policy] evaluation” (Heckman, 2020, p. 9).

What makes RCTs special is due to the statistical property that researchers can estimate ATE “cleanly”
under minimal assumptions. As far as economics is concerned, however, knowing ATE neatly does not
necessarily lead to good policy learning. At best, ATE can deliver policy implications around average.4

At worst, though, ATE could mislead overall policy effects. It is not rare that individuals exposed to
policy intervention under a RCT reveal heterogeneous responses. In such a case, it is likely that ATE
falls short of representing individual (unit-level) treatment effects (ITEs) meaningfully regardless of how
precise it is.5 Deaton and Cartwright (2018) further point out that statistical inference on ATE becomes
less reliable with asymmetric distribution of ITEs.6 Recently, Young (2019) investigates 53 randomized

1American Economic Review, Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review of
Economic Studies.

2For a formal description of RCT in economic contexts, see Athey and Imbens (2017).
3The practice of RCT has been particularly popular in development economics. For summary of RCT-based studies in this

area, see Banerjee, Duflo, and Kremer (2016). In market microstructure, Boehmer, Jones, and Zhang (2020), among others,
stress at the beginning of the paper, “To gauge the effects of a new regime, a particularly useful approach for the regulator is to
test out a new policy by conducting a randomized experiment.”

4For instance, “The case for randomization is weaker if the analyst is interested in other measures of the distribution or
the distribution itself. In general, randomization is not an effective procedure for identifying median gains, or the distribution
of gains or many other key parameters” ((Heckman, 2008, p. 12)). Similarly, “RCTs are informative about the mean of the
treatment effects, but do not identify other features of the distribution” ((Deaton, 2010, p. 439)).

5For example, “The trial might reveal an average positive effect although nearly all of the population is hurt with a few
receiving very large benefits, a situation that cannot be revealed by the RCT” ((Deaton, 2010, p. 463)).

6“Even less recognized are problems with statistical inference, and especially the threat to significance testing posed when
there is an asymmetric distribution of individual treatment effects in the study population” ((Deaton and Cartwright, 2018,
p. 2)).
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experiment papers published in academic journals of the American Economic Association, and find non-
trivial cases of overstated significance of ATE, or its variants, in comparison with testing results drawn
from randomization inference.

[ Figure 2 about here ]

Meanwhile, the use of big data and machine learning (ML) in empirical economic studies has been
surging. Figure 2 shows a skyrocketing trend in recent years among NBER and top-five economic journal
papers adopting them in the area of applied microeconomics. A considerable part of ML applications to
economic studies in particular are focused on causal inference.7 On this front, ML techniques that offer
outstanding out-of-sample predictions are employed at an intermediate stage of casual analysis. In short,
those are deployed in predicting counterfactuals with high accuracy, helping researchers overcome the
fundamental problem of causal inference.8

A major difference of such ML approaches with a conventional way of causal inference is that there
is no necessarily involvement of a control group but a data-driven predictive model imputing counterfac-
tual, which instead of control group offers the baseline outcome for comparison. Hal R. Varian assesses
the potential of ML-based casual inference as, “A good predictive model can be better than a randomly
chosen control group, which is usually thought to be the gold standard” ((Varian, 2014, p. 24)).9 Im-
portantly, causal analysis in this ML way is seamlessly applicable to RCT so long as there are big data
backing up the ML plan. One potential gain of introducing ML to RCT is that researchers can tackle
directly ITE, learning policy effects from ITE rather than ATE, a summary of it.

The Tick Size Pilot Program (TSPP) is the latest RCT conducted by regulatory bodies in the U.S. stock
market over Oct. 2016–Sept. 2018. It is intended to understand the impact of an increase in tick size, the
minimum increment in price grid of quotation, from $0.01 to $0.05 on market outcomes for small-cap
($3 billion or less) stocks. While there have been many of the events of tick-size changes in history of
the U.S. stock market structure, such as the tick-size decrease in 1997 from $1/8 to $1/16 and another
decrease in 2001 from $1/16 to $0.01, TSPP is unique in that it addresses an event of a tick size increase
in the form of RCT.

[ Table 1 about here ]

The response of academia to TSPP has been quite huge. At the time of writing this paper, I find at least
17 academic papers, available as online working papers or published in well-known academic journals,
that all exploit TSPP for dealing with their research questions, as listed in Table 1. While different papers
carry different research questions as observed by diverse choice of outcomes, the table also shows that
the empirical approaches of nearly all the papers converge to Difference-in-Difference (DiD).10 Basically
DiD delivers ATE in panel-data, just as the pooled mean differences of outcomes between treatment and

7For recent discussions of ML applications in a general context of economics, see Athey (2017), Athey and Imbens (2019),
Kleinberg et al. (2015), Mullainathan and Spiess (2017), and Varian (2014).

8The fundamental problem of causal inference refers to the statistical problem that in the potential outcome framework of
causal inference, researchers cannot observe counterfactuals, for example, the hypothetical outcomes of treated units in absence
of treatment during treatment period. For detail, see Holland (1986).

9This basic idea of ML extension to causal analysis is philosophically is similar to that of the Synthetic Control Method
(SCM) that specializes in comparative case study at an aggregate level. In SCM, a synthetic control, an artificial control unit
constructed in data-driven ways, provides a baseline outcome for comparison with actual, intervened outcome for the treated
unit. For introduction, see Abadie (2019, forthcoming).

10Because there is no meaningful reason for differentiation, I count as DiD the two-way fixed-effect panel-data models with
treatment binary indicators on groups and periods.
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control groups.11 In light of the earlier discussions led by, among others, Angus Deaton and James J.
Heckman, then, it may be the case that the prior works on TSPP have depicted only limited aspects of
policy effects and that some of existing conclusions could suffer from false positive, as noted by Young
(2019).

Many of the prior works on TSPP perform a subgroup analysis, mostly in a similar manner of Difference-
in-Difference-in-Difference (DDD), in attempt to capture policy effect heterogeneity. However, there has
been only one characteristic put in place among those collective efforts, namely, tick constrainedness.12

Moreover, while such analyses are believed to be “concise” as is ATE because they are implemented
in a RCT, post-trial subgroup analyses in interacted regression models, like DDD, do not automatically
benefit from statistical advantage of RCT, unlike to ATE.13 As detailed in Deaton (2010, Section 4.2),
such practices accompany more assumptions for unbiasedness than the trial itself.

On this background, I investigate TSPP with the main goal of taking policy evaluations beyond ATE.
For the sake of brevity, I focus only on three outcomes that are among the most representative market
quality measures in the related literature: percentage quoted spread, consolidated displayed depth, and
high-low volatility that approximates a short-term volatility. For each outcome I perform hypothesis
testing stock-by-stock to see whether a pilot stock i in TSPP reveals significant policy effects on it due to
implementation of TSPP. This in analogy is similar to a single parameter testing carried out one-by-one
in a multiple-variable linear regression model. In the TSPP context, this approach is particularly useful
because it can address at the individual level the issue of spillover effects raised in several prior works
that the pilot stocks in the control group also experience a certain degree of the treatment effects. Lastly,
I look into policy effect heterogeneity based on testing results on ITEs. Knowing significance of policy
effects at the individual level enables to conduct heterogeneity analysis in a more extensive manner,
unlimited to a single covariate.

To this end, I propose a novel ML procedure exploiting publicly available large-scale quote data for
the U.S. stock market. In the proposed ML procedure, quote data in the whole year of 2015 are sum-
marized over every half-hour segment during the regular trading session, 09:35 - 15:55, excluding the
first and last five minutes. Those big data then are put in place to train a ML model for each outcome
stock-by-stock in a similar manner of Synthetic Control Method (SCM); that is, the outcomes for thou-
sands of U.S.-traded stocks outside TSPP constitute the right-hand-side of the ML model along with
other variables exogenous of TSPP, such as VIX, time fixed effects at multiple levels, and their inter-
actions. Having being trained via Elastic Net regression, it predicts the outcome for the nine months
before and after Oct. 2016, the policy phase-in month, and derives the prediction errors, defined as the
difference between the actual and predicted outcomes. The first nine months form the pre-intervention
sample, and the ML prediction errors in this period are utilized to estimate inherent biases of the ML
prediction, the biases naturally embedded by the use of ML techniques irrelevant to policy interventions;
the last nine months correspond to the post-intervention sample during which the ML model estimates
counterfactual outcomes for the pilot stocks, the hypothetical outcomes in the absence of TSPP during

11The regression approach has been the universal choice of empirical framework among the prior works on TSPP. In the
context of RCT, however, it may not be the right choice. For example, “Regression methods were not originally developed for
analyzing data from randomized experiments, and the attempts to fit the appropriate analyses into the regression framework
requires some subtleties.” ((Athey and Imbens, 2017, p. 94)) and “Experiments should be analyzed as experiments, not as
observational studies. A simple comparison of rates might be just the right tool, with little value added by ‘sophisticated’
models” ((Freedman, 2006, Abstract)).

12It refers to a cross-sectional characteristics of whether a new tick size of $0.05 likely becomes a binding constraint on
quoted spread.

13For related discussions, see Athey and Imbens (2017, p.98).
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the post-intervention period. Finally, averaging the prediction errors over the pre- and post-intervention
periods separately and having another difference in those averages of the two periods, this ML procedure
estimates ITEs for a given outcome stock-by-stock with bias correction in place.14 Similar to Abadie,
Diamond, and Hainmueller (2010) and Abadie, Diamond, and Hainmueller (2015), the ML procedure
generates the null distribution consisting of the ML estimates for the non-pilot stocks, the stocks not
belonging to TSPP. Against it, I perform inference on ITEs, not only for stocks in the treatment groups
but also for those in the control group of TSPP one-by-one.

With ATE estimates for each of the three outcomes obtained from standard fixed-effect panel-data re-
gressions as benchmark, I find that while ATEs on percentage quoted spread turn out to be significantly
positive, less than half of the sample stocks show significant ITE estimates; ATEs on consolidated dis-
played depth appear to be significantly positive, which is in line with the overall results of hypothesis
testing at the individual level; ATEs on high-low volatility are estimated as significantly negative, but
more than 95% of the sample stocks do not show significance. I find that differing results of significance
between ATEs and ITEs are attributed to the presence of extreme values of ITEs. Also, a ML estimator
of ATE, defined as average of ITE estimates with no involvement of the control group, gives the re-
sults statistically indistinguishable from those obtained from panel-data regressions on the RCT design,
confirming reliability of the proposed ML approach.

Importantly, I uncover the pilot stocks in the control group rarely show significance at the individual
level for all the outcomes, going against the previous findings that document significant spillover effects
on a variety of outcomes over the control group (e.g., Chung, Lee, and Rösch (2020); Rindi and Werner
(2019)).15 I find it reasonable given that traders do not have the incentive to quote in nickel tick size
when they can quote in penny tick size, leaving little room to the control group stocks getting “treated”
in the first place.

In cross-sectional Probit regressions that takes significance of ITEs as the binary outcome for the
stocks in the treatment groups, I show that tick constrainedness can predict policy-effect significance
only for percentage quoted spread but not for consolidated displayed depth.16 That is, most of the
pilot stocks that receive significant positive effects on percentage quoted spread in the post-intervention
periods are those whose average quoted spreads in the pre-intervention periods are smaller than $0.05,
which is consistent with subgroup analysis of Chung, Lee, and Rösch (2020). However, this is not
the case for consolidated displayed depth. Increases in it are widely observed regardless of degrees of
tick constrainedness. This would reflect pulling-up effects of price-choice restriction imposed under
the nickel tick size. That is, for treated pilot stocks that were previously quoted at penny ticks, traders
now can only choose multiples of nickel, thereby tending to quote more often at top-of-the-book prices
when their valuations are lower than the top-of-the-book prices within a few pennies. Interestingly, even
controlling for tick constrainedness, price level, and market capitalization, percentage realized spread, at
any choice of 30-sec., 1-min., or 5-min. time horizon, still shows significant predictability on the both
outcomes, indicating that less-profitable stocks for liquidity providers in the pre-intervention periods,

14This describes a sort of “difference-in-difference” operation. It is designed to get ride of inherent biases of ML predictions,
leaving the ML estimates only due to the policy intervention in TSPP. This debiasing strategy is built upon a “fair” comparison
in a sense that the predictions errors of the both pre- and post-intervention sessions are all made from the out-of-sample
predictions, which is similar to the debiasing scheme suggested in Chernozhukov, Wuthrich, and Zhu (2020) in the context of
SCM.

15Prior works mainly studied spillover effects in the way of Boehmer, Jones, and Zhang (2020), which is essentially be-
fore/after mean comparison of outcome for control group. As widely known, though, this is not necessarily casual comparison
because of time effects researchers are hardly able to fully take out even with many control variables in place.

16High-low volatility is dropped out of this analysis because of widespread insignificance at the individual level.
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gauged by short-run percentage realized spread, are more likely to receive significant policy effects.

The contribution of this paper is largely fourfold. First, this paper complements the previous findings
on TSPP that are built upon ATE mostly. Second, this paper introduces a complete ML procedure to a
policy evaluation problem from an empiricist’s perspective, serving as a better user guide for researchers
who focus on pragmatism of ML rather than theory. Third, this paper brings a new perspective into on-
going discussion about efficacy of RCTs in policy evaluation. In presence of big data, the paper shows
that researchers can study more than ATE in a RCT using ML techniques. Finally, this paper unveils how
good ML predictive models can be for ATE-based casual inference. In comparison with RCT estimators
of ATE that has been widely accepted as the gold standard, the paper shows that a ML predictive model
built upon big data can produce ATE estimates statistically indistinguishable from those of RCT versions.

The remainder of the paper is organized as follows. In Section 2, I briefly introduce TSPP. I summarize
previous findings on TSPP and review the literature on tick size. In Section 3, I detail the ML-based
empirical approach. In the potential outcome framework, I develop ML estimators of ITE and ATE
along with bias-correction and inference strategy. In Section 4, I describe data used in this paper. In this
section, I also illustrate the sampling process for pilot stocks. In Section 5, I present empirical results of
ML estimation of ITE and ATE. In Section 6, I deliver a policy implication based on the empirical results
of ML estimation. Finally, I conclude the paper in Section 7.

2. Tick Size Pilot Program

I start this section with discussing key features of TSPP as a RCT.17 Then, I go over the existing
findings on TSPP with focus on the impact of the increased tick size on market quality measures. Finally,
I summarize previous studies in the literature on tick size conducted prior to TSPP.

2.1. Treatments, Randomization, and Outcomes

Two regulatory bodies of the U.S. stock market, Security and Exchange Commission (SEC) and Fi-
nancial Industry Regulatory Authority (FINRA), launched TSPP in Oct. 2016. TSPP is a RCT that
carries small-cap ($3 billion or less) common stocks. The main rule change of interest in TSPP is an
increase in the minimum price increment, often called tick size. Under TSPP, roughly 1,200 stocks in
three treatment groups commonly face a five-fold increase in quoting tick size from one penny to one
nickel over the course of the two-year pilot period. By contrast, the pilots stocks in a similar number in
the control group experience no rule change in the same period, serving as a comparison group against
the treatment groups.

An increase in tick size is better understood as a restriction on price choice in the decimal price grid.
For example, when a stock is traded around $10.05, under the penny tick size can traders make a quote
with penny increment, such as $10.01, $10.02, · · · , $10.09, $10.10 for buy or sell. However, they are
only able to choose a multiple of nickel, such as $10.00, $10.05, or $10.10, under the nickel tick size.

TSPP also involves two other rule changes, which are applied progressively over the three treatment
17There are a number of research papers offering in-depth institutional contexts on TSPP. For example, see, among others, Al-

buquerque, Song, and Yao (2019), Bartlett and McCrary (2017), Griffith and Roseman (2019), Hu et al. (2018) and Rindi and
Werner (2019). Also, SEC discusses them in SEC (2012, p. 2). A general description of TSPP can be found at FINRA’s
and SEC’s TSPP webpages: https://www.finra.org/rules-guidance/key-topics/tick-size-pilot-program

(FINRA); https://www.sec.gov/ticksizepilot (SEC).
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groups. The first treatment group (G1) receives only the tick size increase in quotation. In addition
to it, the second treatment group (G2) is enforced to trade in the nickel tick size. Under those two
rule changes in place, the last treatment group (G3) is also subject to the trade-at rule that restricts
off-exchange trading.18

Importantly, TSPP adopts a stratified random sampling process in assigning pilot stocks to the treat-
ment and control groups. This balances the treatment and control groups on several key cross-sectional
characteristics, price, market capitalization, and trading volume, that likely impact on market outcomes
regardless of exposure to policy interventions.19 To be specific, eligible stocks are labeled by either,
low, medium, or high on each of the characteristics, resulting in total 27 possible categories.20 Then, the
stocks in each category are randomly assigned to three treatment groups. Each treatment group roughly
consists of 400 stocks, and the rest of the eligible stocks not assigned to the treatment groups constitute
the control group.

The SEC’s online Bulletin letter states that TSPP is designed “to assess whether wider tick sizes
enhance the market quality of these [small-cap] stocks for the benefit of issuers and investors—such as
less volatility and increased liquidity.” It shows market quality centers on outcomes of interest in TSPP.
Typical market quality measures include quoted spread, depth, volatility, etc. Furthermore, other types of
outcomes can be studied in TSPP as well. For instance, a tick size change apparently impacts on quoted
spread, which in turn can affect decision making of traders on order choice (e.g., Bloomfield, O’hara, and
Saar (2005); Griffiths et al. (2000); Harris and Hasbrouck (1996); Hollifield, Miller, and Sandås (2004);
Ranaldo (2004)) and venue choice (e.g., Buti, Rindi, and Werner (2011); Kye and Mizrach (2019); Ready
(2014)). Then, any measure approximating those activities can be also outcomes of interest in TSPP.

2.2. Existing Findings

Reflecting the first-order question of how TSPP impacts on market quality, early empirical investiga-
tions into TSPP are putting a variety of liquidity measures on the left hand side and looking to estimate
average effects of the TSPP intervention. By and large, the five-fold increase in tick size turns out to be
widening quoted spread but, at the same time, ramping up consolidated displayed depth at the National
Best Bid and Offers (NBBO) level (e.g., Albuquerque, Song, and Yao (2019); Chung, Lee, and Rösch
(2020); Hansen et al. (2017); Hu et al. (2018); Lin, Swan, and Mollica (2018); Penalva and Tapia (2017);
Rindi and Werner (2019)). This is consistent with the general understanding of the literature that widen-
ing tick size promotes liquidity provision, represented by increases in consolidated displayed depth, at
a higher expense of taking liquidity, shown by increases in quoted spread. While the magnitude of the
impacts vary from paper to paper, the findings of the prior works overall are significant both statistically
and economically. Interestingly, Chung, Lee, and Rösch (2020) and Rindi and Werner (2019) show the
presence of the spillover effects in TSPP that the pilot stocks in the control group experienced a certain

18For detail, visit https://www.finra.org/rules-guidance/key-topics/tick-size-pilot-program.
19Randomization removes only in expectation selection biases coming from preexisting differences of outcomes between

treatment and control groups. So it could result in a biased estimate in a given experiment, as randomization itself does not
achieve balance between the treatment and control groups. Stratified random sampling is often recommended in RCT for
balancing, thereby generating the treatment and control groups in practice, rather than in expectation, reasonably identical
except exposure to policy interventions at the group level.

20There are certain eligibility conditions for stocks to be included in TSPP. For one, stocks must have market capitalization of
$3 billion or less and closing price of at least $2.00 per share, based on September 2, 2016. For full description, see the “SEC’s
Plan to Implement Tick Size Pilot Program,” available at https://www.sec.gov/rules/sro/nms/2015/34-74892-exa.
pdf.
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degree of “treatment” in the same direction those in the treatment groups went through.

Yet, the results on liquidity leave some ambiguity in deciding the total effect of the tick size increase
on liquidity, as both quoted spread and displayed depth at NBBO increase. In reflection of it, Chung, Lee,
and Rösch (2020) and Griffith and Roseman (2019) take as outcomes hypothetical multi-share round-trip
transaction costs that jointly consider both of the negative and positive aspects of the tick-size effects on
liquidity. While Griffith and Roseman (2019) find a detrimental total effect with a Nasdaq-listed stocks
sample, Chung, Lee, and Rösch (2020) tell otherwise by showing a decline in round-trip costs, computed
from the consolidated limit order book covering all the pilot stocks.

In addition, the impact of the tick-size increase on liquidity likely goes beyond the NBBO level. In
this regard, Penalva and Tapia (2017) look at cumulative depths for all the pilot stocks with ITCH data
and find increases in depth are not widely observed within a few extra tick ranges. With Nasdaq-listed
pilot stocks in ITCH data, Griffith and Roseman (2019) show a reduction in cumulative depth. By
contrast, Chung, Lee, and Rösch (2020) document a significant increase in cumulative depth based on
more comprehensive data sets from the Thomson Reuters Tick History database.

Other popular liquidity measures are also put in place of outcomes. Overall, effective spread, realized
spread, and price impact all appear to go up by the tick-size intervention (e.g., Bartlett and McCrary
(2017); Chung, Lee, and Rösch (2020); Hu et al. (2018); Lin, Swan, and Mollica (2018); Penalva and
Tapia (2017); Rindi and Werner (2019)). Market efficiency, typically gauged by variance ratios or auto-
correlation of short-term returns, tends to deteriorate (e.g., Albuquerque, Song, and Yao (2019); Hu
et al. (2018)). Results on volatility are mixed though. While Penalva and Tapia (2017) show a decrease
in volatility by the tick-size increase, Hu et al. (2018) and Rindi and Werner (2019) find the opposite.
Different ways of approximating volatility may be contributing to those conflicting findings.

Importantly, a majority of the papers look into heterogeneous effects of the tick size increase. They
focus on the fact that there is a group of the pilot stocks whose quoted spreads are often less than $0.05 in
the pre-intervention period, and the others tending to have a larger quoted spread, for instance, exceeding
$0.05 in the same period. This observation naturally but logically leads to a thought experiment that
switching over to the nickel tick size from the penny likely brings about differing impacts between the
tick-constrained and tick-unconstrained groups.21 In short, they find tick-constrained stocks generally
have more pronounced effects on various liquidity measures than tick-unconstrained stocks do mostly in
the same direction (e.g., Albuquerque, Song, and Yao (2019); Chung, Lee, and Rösch (2020); Hu et al.
(2018); Lin, Swan, and Mollica (2018); Rindi and Werner (2019)).

There are other papers on TSPP that deal with research questions not directly related with the market
quality aspect. Mostly, those papers are interested in shedding light on the proliferation of a wide range of
trading venues. In particular, researchers employ the tick size change to see the role of diverse fee/rebate
schedules or unravel motivation behind off-exchange trading (e.g., Bartlett and McCrary (2017); Cox,
Van Ness, and Van Ness (2019); Comerton-Forde, Grégoire, and Zhong (2019); Farley, Kelley, and
Puckett (2018); Lin, Swan, and Mollica (2018)). Finally, there are a few studies that look into TSPP to
address issues lying in the intersection between market microstructure and corporate finance (e.g., Lee
and Watts (2018); Li, Ye, and Zheng (2019); Thomas, Zhang, and Zhu (2018); Ye, Zheng, and Zhu
(2019)).

21Tick-constrained stocks are those having a narrower quoted spread in the pre-intervention period so that the nickel tick
size in the post-intervention period likely becomes a binding constraint on quoted spread; tick-unconstrained stocks are those
having a quoted spread wider enough in the pre-intervention period to get the new tick size in the post-intervention period not
to be binding quoted spread.
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2.3. Literature on Tick Size

Researchers in the market microstructure have long been interested in understanding how tick size
affects liquidity.22 A change in tick size impacts directly on quoted spread that underlies the incen-
tive scheme of liquidity provision and demand (e.g., Goettler, Parlour, and Rajan (2005)). While the
magnitude of tick size matters most, the incremental unit of tick size, either fractional or decimal, is
also an important consideration in relating tick size and liquidity (e.g., Harris (1997); Harris (1999)).
In general, a larger tick size is believed to incentivize liquidity provision while increasing transactions
costs of taking liquidity, and vice-versa, even as the details of this presumable effect likely varies by
investors’ characteristics (e.g., Seppi (1997)), or the composition of informed and liquidity traders in the
market (e.g., Anshuman and Kalay (1998); Foucault, Kadan, and Kandel (2005)). Equally important, the
fact that liquidity has close ties to price efficiency suggests that a tick-size change is also influential on
it, often examined through predictability of short-term returns (e.g., Chordia, Roll, and Subrahmanyam
(2008)).

Popular market quality measures, such as quoted spread, realized spread, effective spreads, and dis-
played depth, and certain volatility measures, are normally put in place of outcomes of interest to evaluate
the impact of tick-size changes. While in different marketplaces, most of the tick size changes in the prior
literature are driven by either a simple reduction in tick size, from one-eighth to one-sixteenth, or a re-
duction due to decimalization, from one-sixteenth to one-hundredth (e.g., Ahn, Cao, and Choe (1996);
Ahn, Cao, and Choe (1998); Bacidore (1997); Bacidore, Battalio, and Jennings (2003); Bessembinder
(2003); Chakravarty, Wood, and Van Ness (2004); Chakravarty, Panchapagesan, and Wood (2005);
Chung and Chuwonganant (2002) Goldstein and Kavajecz (2000); Harris (1996); Ronen and Weaver
(2001); Van Ness, Van Ness, and Pruitt (2000)). Importantly, all the previous empirical evidence have
been collected from certain events of tick size decrease in the form of natural experiments, in contrast to
TSPP focused on an increase in the tick size in a RCT.

Yet, the impacts of tick size changes on market quality in general are not uniquely signed nor uniform
in the cross-section. Among the sources of the cross-sectional heterogeneity is price level of stocks, to
which relative tick size is differently imputed into cost/benefit calculations of order submission strategies
(e.g., Harris (1994)). In addition, heavily traded stocks, often classified as large cap stocks, experiences
more pronounced effects on liquidity in response to a tick size change (e.g., Bessembinder (2003); Chung
and Chuwonganant (2002)). Degree of inter-market competition adds another channel (e.g., Ahn, Cao,
and Choe (1996)). Moreover, tick sizes appear to play a pivotal role in other dimensions as well, such
as stock splitting (e.g., Angel (1997)), the performance of mutual funds (e.g., Bollen and Busse (2006)),
off-exchange routing decisions (e.g., Kwan, Masulis, and McInish (2015)), and IPO decisions (e.g.,
Bessembinder, Hao, and Zheng (2015)).

3. Machine Learning Approach

This section introduces a ML procedure to investigate policy effects individually. The outline of
the ML strategy is the following: (a) build a ML prediction model for a single pilot stock; (b) predict
counterfactual outcome for the stock over the sample period; (c) estimate its policy effect as the time-
series mean of the differences between actual and predicted outcomes; (d) apply the same procedure

22An overarching summary of the prior literature along with related institutional, regulatory backgrounds is available at SEC
(2012).
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to the rest of the pilot stocks in parallel way. In development of this ML procedure, I discuss a bias-
reduction strategy and inferential scheme. In addition, I suggest a ML estimator of panel-data ATE as
average of ML estimates of ITE that dose not count on the control group of TSPP at any stage. This is
to examine how well a ML-based predictive model is performing in contest with panel-data regression
models that exploit the RCT design.

3.1. Cross-sectional Universe and Sample Period

The ML strategy of this paper employs stocks not only in TSPP but those outside TSPP. I call the
group of selected stocks outside TSPP a donor pool, which represents TSPP-free stocks.23 In turn, I
consider any group in TSPP, either treatment or control group, as a “treatment” group that is subject to
direct or indirect influence of TSPP; that is, the cross-sectional dichotomy for casual inference is pilot
stocks versus non-pilot stocks.

In constructing a ML model for pilot stock i, there is no involvement of the rest of the pilot stocks
including those in the control group but only the non-pilot stocks in the donor pool will be present in
parallel manner as they do to the ML model for pilot stock j. Thus, I will focus on the buildup of a ML
model for one prototypical pilot stock.

[ Figure 3 about here ]

I denote the entire cross-sectional universe of the ML model for pilot stock k by set I ≡ {k} ∪ Id,
where Id represents the donor pool of Nd non-pilot stocks. Accordingly, the empirical setting starts with
(Nd + 1) × T panel data with outcome Yi,t for stock i ∈ I in period t ∈ P, where P ≡ {1, 2, · · · , T}
indicates the whole sample period, consisting of training sample Ptr, pre-intervention sample Ppre, and
post-intervention sample Ppost with Ttr, Tpre, and Tpost periods, respectively, under Ttr + Tpre + Tpost =

T. As Figure 3 illustrates, Ptr covers the first 12 months of the whole sample period, Jan. - Dec., 2015;
Ppre the next 9 months, Jan. - Sept. 2016; Ppost the last nine months, Nov. 2016 - Jul. 2017.24

3.2. Potential Outcome Framework

The ML strategy for estimating ITE is based on the potential outcome framework or the Rubin Causal
Model.25 For pilot stock k, it postulates two potential outcomes Yk,t(0) and Yk,t(1) in period t ∈ P
that represent the outcomes implied with and without policy intervention of interest, respectively. Then,
∆k,t ≡ Yk,t(1)−Yk,t(0) for t ∈ Ppost defines a policy effects in period t. Notice, though, that researchers
cannot observe counterfactual, Yk,t(0) in t ∈ Ppost, whereas ∆k,t needs knowledge of it.26

To estimate counterfactual, I exploit a cross-sectional predictive relation between pilot stock k and
Nd non-pilot stocks, similar to the identification strategy of SCM. A rationale behind it is that they are
likewise the entities of the U.S. stock market having been interacted under the same market structure.27

There are thousands of non-pilot stocks that are likely to have a stable cross-sectional relation with pilot

23Composition of a donor pool will differ by outcomes. Construction of donor pools for a given outcome will be discussed
later in this section and related statistics will be present in Section 2.4.3.

24Notice that the policy interventions in TSPP begin in three stages over Oct. 2016. To avoid complications occurring in that
month, I delete this month from the sample period, adding one month gap between the pre- and post-intervention periods.

25For detail of the potential outcome framework, see Athey and Imbens (2017) and Imbens and Rubin (2015).
26This refers to the so-called fundamental problem of the causal inference, coined by Holland (1986, p. 947).
27Statistically speaking, this would indicate a common-factor model, which is one of the models presumed in SCM.
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stock k as an individual or group but at the same time unlikely to be affected by TSPP. To best take
advantage of this presumable cross-sectional predictive relation, I let a ML algorithm choose among
them in a way of maximizing predictive accuracy for counterfactual estimation.

To bring non-pilot stocks into the potential outcome framework, let Wi,t ∈ {0, 1} be the binary indi-
cator showing the policy intervention status for stock i ∈ I in period t ∈ P as follows:

Wi,t =

{
1 if i /∈ Id and t ∈ Ppost,
0 otherwise

(1)

Then, the observable outcomes, denoted by Yobs
i,t , can be written as:

Yobs
i,t = Yi,t(Wi,t) =

{
Yi,t(1) if Wi,t = 1,
Yi,t(0) if Wi,t = 0.

(2)

To clarify the prediction problem concerned here, further define Yobs
d,tr, Yobs

d,pre, and Yobs
d,post as Nd × Ttr,

Nd × Tpre, and Nd × Tpost matrices of the observed outcomes for the stocks in donor pool Id, blocked by
Ptr, Ppre, and Ppost, respectively, i.e., the (i, t)-th entry of each matrix represents Yobs

i,t . Similarly, Yobs
0,tr,

Yobs
0,pre, and Yobs

0,post denote 1× Ttr, 1× Tpre, and 1× Tpost row-vectors of the outcomes for the single pilot
stock over the three respective time blocks. Then, all the observed outcomes indexed by (i, t) ∈ I × P,
denoted by Yobs, can be written as:

Yobs

(Nd+1)×T
=

(
Yobs

0,tr Yobs
0,pre Yobs

0,post

Yobs
d,tr Yobs

d,pre Yobs
d,post

)
=

(
Y0,tr(0) Y0,pre(0) Y0,post(1)
Yd,tr(0) Yd,pre(0) Yd,post(0)

)
(3)

Recall that the policy effect in each period depends on both Y0,post(1) and Y0,post(0), as discussed
earlier, although only is the former observable. The statistical problem faced with this policy problem is
then to impute the unobserved part using all the available information:

Y(0)
(Nd+1)×T

=

(
Y0,tr(0) Y0,pre(0) ?
Yd,tr(0) Yd,pre(0) Yd,post(0)

)
(4)

This has a similar structure with Doudchenko and Imbens (2016, p. 4) that extends the SCM framework
to a big data setting. However, there is one important distinction that I reserve one extra set of the
unaffected periods, Ppre. Those are the periods prior to the beginning of policy intervention but not part
of the training sample. Ppre plays an important role in this ML procedure. I use it to estimate inherit
biases of ML predictions, which is later to be employed to correct the counterpart over Ppost.28

3.3. Estimation of Individual Stock-Level Treatment Effect (ITE)

To impute the unobserved potential outcome in (??) and so estimate ITE after all, I set up a Elastic
Net regression model.29 The ML estimation for pilot stock k involves three steps. The first step performs
training the ML model using data in Ptr; the second step calculates inherent ML biases of out-of-sample

28A similar idea of bias correction in the SCM context is recently formulated in Chernozhukov, Wuthrich, and Zhu (2020).
29I employ glmnet package in R for estimation. It is among the most popular ML programming packages that offer a

complete set of ML analytic tools, covering from cross-validation to out-of-sample predictions.
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predictions over Ppre; the final step estimates ITE over Ppost with differencing out the ML biases obtained
from the prior step.

To be specific, training the ML model for stock k with data measured at the half-hour frequency in Ptr

is based on the following penalized least squares problem: for a given pair of λ > 0 and α ∈ (0, 1), I
solve

min
(µ,w)∈R×RL

Q(µ, w|Ptr;λ,α),

Q(µ, w|Ptr;λ,α) ≡ ∑
t∈Ptr

(
Yobs

k,t −µ − wX′
t
)2

+ λ
(1 −α

2

L

∑
l=1

w2
l +α

L

∑
l=1

|wl |
)

, (5)

Xt ≡ [Yobs′
d,t

... Z′
t]
′, Yobs

d,t ≡ [Yobs
1,t ,Yobs

2,t , · · · ,Yobs
j,t , · · ·Yobs

Nd ,t]
′
j∈Id

, Zt ≡ [Z1,t, Z2,t, · · · , ZM,t]
′

where Zt is a M-vector that consists of M extra predictors measured in period t, other than the outcomes
for non-pilot stocks in Id; Yobs

d,t is a Nd-vector that contains the outcomes for non-pilot stocks in Id

observed in period t; Xt is a L-vector with L = Nd + M whose first block is Yobs
d,t and second Zt; Yobs

k,t is
the observed outcome for pilot stock k in period t.

Notice that Xt contains not only outcomes for non-pilot stocks, Yobs
d,t , but also extra predictors Zt

exogenous of TSPP. To it, I include VIX, its highest and lowest values, different levels of time fixed
effects converted into dummy variables (13 half-hour intervals, five weekdays, and 12 months fixed
effects), and all possible interactions among them, making Zt a 3,119-vector after all. A anologous
strategy is found in Burlig et al. (2017) that set up separate ML models for multiple treated units with the
same structure of the predictors, including outcomes for untreated units, a variety of time fixed effects,
and their interactions.30

Before running the parameter estimation on (??), I standardize all the right-hand-side variables so
that each predictor in Xt has mean zero and variance one. To determine two tuning parameters λ and
α, I conduct the 10-fold cross-validation with the training sample, where I limit the value of α to a
finite set {0.1, 0.2, · · · , 0.9} but allow that of λ to cover all possible positive real numbers on (0,∞)

as in Doudchenko and Imbens (2016). In the end, the training process returns the Elastic Net estimates
(µ̂tr, ŵtr) such that:

(µ̂tr, ŵtr) = arg min
(µ,w)∈R×RL

Q(µ, w|Ptr;λcv,αcv) (6)

where λcv andαcv are the tuning parameters drawn from the 10-fold cross validation.

With (µ̂tr, ŵtr) at hand, I perform out-of-sample predictions ŶML
k,t ≡ µ̂tr + ŵtrX′

t, t ∈ Ppre ∪ Ppost and
compute the average prediction errors over Ppre and Ppost, denoted by ∆̂k,pre and ∆̂k,post, separately, as

30They employ a ML technique within the panel-data regression framework. By contrast, this paper uses it rather in the SCM
context.
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follows:31

∆̂k,pre ≡ T−1
pre ∑

t∈Ppre

∆̂k,t

∆̂k,post ≡ T−1
post ∑

t∈Ppost

∆̂k,t (7)

∆̂k,t ≡ Yobs
k,t − ŶML

k,t , t ∈ Ppre ∪ Ppost

In (7), ∆̂k,post is the average prediction error on the outcome for pilot stock k over the post-intervention
period, presumed to be sum of ITE and a bias component that arises due the regularization of the ML
technique. On the other hand, ∆̂k,pre is the counterpart over the pre-intervention period that contains only
the bias component.32 To wipe out the bias component in ∆̂k,post, thus, I take another difference on the
average prediction errors over the pre- and post-intervention periods, i.e., the final estimator of ITE for
pilot stock k is defined as:

ÎTEk ≡ ∆̂k,post − ∆̂k,pre (8)

Under the stationarity assumption on prediction errors in additivity, this bias-correction strategy would
be theoretically valid, leaving to ÎTE only variations induced by policy intervention of interest.33 To
avoid unequal sample-size effects, I also set the lengths of the two periods, Ppre and Ppost, roughly the
same as the nine months.

Finally, I define the ITE test statistics, denoted by τ̂k, as normalized differences:

τ̂k ≡
∆̂k,post − ∆̂k,pre√

Ŝ2
k,post + Ŝ2

k,pre

(9)

where Ŝ2
k,· is a long-run variance estimator for ∆̂k,t based on the Newey-West formula with lag truncation

parameter m = 13 (half-hour intervals) × 5 (days), in reflection of potential autucorrelation over one
trading week.34

Statistical inference at the individual stock level with (9) will be performed based on the placebo test,
popularized by the early SCM literature.35 Unlike standard econometric approaches, this does not rely
on asymptotic distributions. I instead generates the null distribution from ITE results for the non-pilot
stocks whose test statistics reflect uncertainty of the ITE estimator under the null. In investigating ITE, I
will mostly focus on significance of ITE with test statistics (9) rather than the estimator (8) itself.

31To relieve outlier effects, I trim out the ML prediction errors {∆̂k,t}t∈P at the lower and upper 2.5 percentiles over Ppre
and Ppost separately.

32As widely known, there are naturally embedded biases in ML predictions. This is because typical ML prediction models
aim to maximize predictive accuracy by balancing bias square and variance in coefficient estimation, which does not necessarily
set bias zero. The Elastic Net is no exception, and will return coefficient estimates µ̂ and ŵ that likely allow nonzero biases in
exchange for a better out-of-sample predictive accuracy. This is in short called regularization biases

33This is a widely accepted assumption in the time-series context. A similar idea is employed in Chernozhukov, Wuthrich,
and Zhu (2020) to correct ML bias in the SCM context.

34The Newey-West variance formula with truncation parameter m is given by:

Ŝ2
k,· = γ̂k,·(0) + 2

m−1

∑
r=1

(1 − r/m)γ̂i,·(r), γ̂k,·(r) = T−1
· ∑

t∈P·

(
∆̂k,t − ∆̂k,·

)(
∆̂k,t−r − ∆̂k·

)
35For overview, see Abadie, Diamond, and Hainmueller (2015, pp. 499-500).
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3.4. Hypothesis Testing

Hypothesis testing is based on placebo tests. The principle of placebo tests here is that a policy
effect for a pilot stock shall be considered as significant only when it is clearly differentiated from those
obtained from non-pilot stocks in the same manner.36

To be specific, I compute test-statistics in (??) for every non-pilot stock j ∈ Id following the same
procedure but excluding self-inclusion to Yobs

d,t in (??). After that, I draw the distribution of the test
statistics of them {τ̂ j} j∈Id and find critical values at 5% significance level.37 Viewing it as the null
distribution, I perform hypothesis testing for each of the pilot stocks one-by-one.

As widely known, however, this strategy potentially poses the multiple testing problem, as there are
hundreds of individual testings involved.38 Taking this into account, I apply the Benjamini–Hochberg
(BH) procedure to each group of TSPP separately and base main individual testing results on it.39

3.5. Comparison with Existing Approaches

Most of the prior works focus on ATE, which is concerned with the null hypothesis of zero ATE. This
reflects the effort to understand policy effects in average sense for the population of interest. Exploiting
the RCT design of TSPP, one can also run the randomization inference, testing the sharp null that there
is no policy effect at all for all intervened units (e.g., Young (2019)). Unlike to testing on zero ATE, the
sharp null approach is interested in the existence of policy effects. Different from both, the placebo-test
approach of this paper carries the null hypothesis of no policy effect for one given unit. It is designed to
evaluate policy effects unit-by-unit. In the context of policy evaluation, this would be painting the most
comprehensive picture of policy effects.40

3.6. Estimation of Average Treatment Effect

I also consider a ML estimator of panel-data ATE, simply defined as average of ITE estimates in (8).
This ML estimator of ATE is immediately comparable to those obtained from typical panel-data regres-
sion models, such as Difference-in-Difference. Because of comparability, this spin-off ML estimator
helps examine how reliable a ML-based predictive model is in comparison with panel-data regression
models built upon the RCT design, or the “gold standard.”

In TSPP, there are three nonoverlapping treatment groups of pilot stocks, denoted by G1, G2, and G3,
to which three separate policy changes are applied progressively from G1 through G3, as explained in
Section 2. In this exercise, I do not try to break apart treatment effects by each change. Instead, I simply

36The pioneers of SCM describes it as: “our confidence that a particular synthetic control estimate reflects the impact of the
intervention under scrutiny would be severely undermined if we obtained estimated effects of similar or even greater magnitudes
in cases where the intervention did not take place” ((Abadie, Diamond, and Hainmueller, 2015, p. 499)).

37To avoid outlier effects, I trim out {τ̂ j} j∈Id at lower and upper 0.5% quantiles before proceeding with statistical inference.
38Some of the p-values less than a predetermined significant level like 5% could be driven purely by chance even if all the

null hypotheses are indeed true; that is, the probability of committing false positives, i.e., a chance of a null hypothesis being
spuriously called significant, gets larger simply because the number of the hypothesis tests involved is large.

39An excellent summary of the BH procedure with an example is offered by McDonald (2014, p. 257) or its online version at
http://www.biostathandbook.com/multiplecomparisons.html. As to be present later, though, the BH procedure does
not bring in a dramatic change to the results of inference drawn from regular p-value-based testing.

40Another important advantage is that this approach is easy-to-understand compared to the other inferential strategies in-
volving ML techniques for casual inference. One drawback of this approach is that it does not provide confidence intervals of
effects. It is, however, of little importance in this paper.
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look into ATE group-by-group, which is actually the common way a majority of the prior works have
adopted.

Employing the ML estimator of ITE in (8), the ML estimator of panel-data ATE for treatment group
G is defined as:

ÂTE
ML
G ≡ N−1

G ∑
i∈G

ÎTEi, NG ≡ #{i ∈ G}. (10)

Accordingly, the standard error and variance estimator of it are defined as:

ŜE
ML
G ≡

√
V̂ML

G
NG

, V̂ML
G ≡ (NG − 1)−1

∑
i∈G

( ÎTEi − ÂTE
ML
G )2. (11)

3.7. Construction of Donor Pools

One set of the predictors in the ML model is the outcomes for non-pilot stocks, Yobs
d,t in (5), motivated

by the SCM literature. In turn, this necessitates a sampling procedure to form a well-designed donor
pool of non-pilot stocks.

Abadie, Diamond, and Hainmueller (2015, p. 500) lay out three criteria for units to be part of donor
pool in the SCM context. I find two of them directly applicable to this paper, as stated: (a) the units in
the donor pool shall not experience significant idiosyncratic shocks to the outcomes of interest; (b) the
units in the donor pool shall not be affected by policy intervention of interest.

I construct the donor pool for each outcome according to those two criteria. I apply several filter-
ing rules for (a) at the data processing level and examine stationarity on time series of outcomes for
(b). Because of this process, the whole sampling procedure results in different sets of non-pilot stocks
depending on choice of outcome among percentage quoted spread, consolidated displayed depth, and
high-low volatility. The detail of the sampling procedure for donor pools will be presented in subsec-
tion 4.3 and Appendix C.

4. Data

This section delivers data descriptions. First of all, the whole sample period is stretched over total 31
months in Jan. 2015 - Jul. 2017, divided by three consecutive segments: the training sample (Jan. - Dec.
2015), the pre-intervention sample (Jan. - Sept. 2016), and the post-intervention sample (Nov. 2016 -
Jul. 2017).41

I start this section with introducing data sets used in this paper. Then, I define the three outcomes of
interest and describe sampling procedures for pilot stocks as well as non-pilot stocks. Finally, I look at
descriptive statistics on the three outcomes.

41I exclude the four early closing days from the sample: Nov. 27, 2015, Dec. 24, 2015, Nov. 25, 2016, and Jul. 3, 2017.
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4.1. Data Sets

Daily TAQ and CRSP are the two most important data sets in this paper. The former provides quote
data for all the U.S.-traded stocks that record intraday updates of best orders on the either bid or offer
side in major national stock exchanges. All the three outcomes of interest are constructed from it, as to be
shown below. The latter contains information of security-specific characteristics and trading summaries,
such as the number of outstanding shares, listing exchanges, stock classes, opening/closing price, and
share trading volume, for most of the U.S.-traded stocks on a daily basis. I employ it to sample stocks. In
addition, I obtain CBOE Volatility Index (VIX) at the half-hour frequency from the Bloomberg Terminal.
Lastly, data tracking the list of pilot stocks over the experimental periods are found at the FINRA’s TSPP
page.42

4.2. Outcomes

The three outcomes of interest describe three different aspects of U.S. stock market quality, consisting
of two liquidity measures, percentage quoted spread and consolidated displayed depth, and one short-
term volatility measure, high-low volatility. All the outcomes are based on NBBO quotes, the nationwide
best quotes among the locally best quotes on individual stock exchanges.43 Following the related liter-
ature, I sort out NBBO at each quote update in the raw TAQ data using the Holden and Jacobsen (HJ)
algorithm.44

The three outcomes, indexed by stocks and half-hour intervals, are computed in the standard way of the
literature. Percentage quoted spread, the national best offer price minus the national best bid price divided
by the midpoint of them at each quote update, is time-averaged within the half-hour intervals. Similarly,
consolidated displayed depth, the sum of the displayed bid and offer depths on all the exchanges at NBBO
divided by two at each update, is also time-averaged within the half-hour minutes. High-low volatility
is defined as the highest NBBO midpoint minus the lowest NBBO midpoint in each half-hour interval
divided by the time-averaged NBBO midpoint on the corresponding half-hour interval. Finally, I multiply
percentage quoted spread and high-low volatility by 10,000 and consolidated displayed depth by 100 to
represent percentage quoted spread and high-low volatility in basis points (bps) unit and consolidated
displayed in shares unit, respectively.

4.3. Sample Stocks

While all the pilot stocks in TSPP are of interest by default, the use of machine learning approaches
requires certain data conditions to ensure existence of reliable training data sets, which excludes some
pilot stocks inevitably. As for non-pilot stocks, a sampling procedure, in addition to a similar require-

42For detail, visit https://www.finra.org/rules-guidance/key-topics/tick-size-pilot-program.
43The U.S. stock market is built on a virtual consolidation among 13 national exchanges. They are standing independently as

separate markets, but are loosely connected as one large stock market by regulation. NBBO depicts overall quality of the U.S.
stock market as a whole.

44This is the algorithm developed in Holden and Jacobsen (2014) and now becomes the standard procedure in the literature.
In that paper, the authors originally discuss data problems in Monthly TAQ quote data for NBBO processing. However, many
of the data issues, such as crossed or withdrawn quotes, are still present in Daily TAQ quote data when one runs the NBBO
processing from scratch using Daily TAQ quote data only. The authors maintain a SAS code that extends their algorithm to
make it applicable to Daily TAQ, which is generously available on one of their websites, https://kelley.iu.edu/cholden.
Adopting the same filtering rules found in that SAS code, I write my own JAVA code to run it over a large scale of stocks-days
jobs.
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ment on trading activities, involves certain stationarity conditions on outcomes, excluding those showing
irregular time-series movements during the pilot period.

Pilot Stocks

Based on the FINRA data tracing changes in security, I construct a sample of the pilot stocks. First, I
exclude pilot stocks that undergo changes irrelevant to TSPP but likely influential on the outcomes.45 I
further put certain requirements on trading activities to ensure that the resulting sample does not include
those infrequently traded or quoted.

[ Table 2 about here ]

Table 2 summarizes the whole process of sampling the pilot stocks. On top of that, the pilot stocks
that reveal unrelated changes, such as changes in ticker symbols or listing exchanges, are excluded.
Also, I delete the stocks in the treatment groups switching over to the control group in the pilot peri-
ods due to stock prices falling below the minimum required level, $1.00. In addition, I remove those
that drop out of the program too early or do not have complete records in the tracking information,
TSPilotChanges.txt. With the one-year minimum length of survival in the experimental periods im-
posed, I further require 5,000-share daily trading at least for two-thirds of the trading days in each of
the three sub-samples, the training sample, pre-intervention sample, and post-intervention sample. Fi-
nally, I exclude several remaining stocks that appear ill-defined in the initial sample periods in CRSP
and NBBO-sorted quote data. In sum, the sampling procedure results in 810 stocks in control group and
272, 257, and 242 stocks in the three treatment groups from G1 to G3 in order. The selected pilot stocks
in control group account for 83.72% and those in the treatment groups 85.74% of the aggregate trading
volume over the whole sample period, capturing a majority of trading activities during this period.

Donor pools

Table 3 summarizes the sampling process for non-pilot stocks. Starting with all the U.S.-listed stocks
uniquely identifiable from CRSP data, I exclude the stocks involved in TSPP first and place the 5,000-
share daily trading rule, as applied to pilot stocks, initially producing 5,955 stocks.46 Next, I delete
the stocks likely to undergo idiosyncratic events over the sample periods. The three abnormality filters,
no stock split, no excessive overnight return, and no abrupt change in outstanding shares, conduct it,
excluding 1,403 in total and leaving 4,552 stocks. Furthermore, I only consider the stocks that have the
same trading sequence as at least one sampled pilot stock over the sample periods.47 This rule removes
2,221 stocks, but they as a whole represent a very small portion of trading activities, taking off merely
less than seven percentage points in the trading volume share from the prior stage. After that, I preclude
the stocks that have very low volatility over the sample periods of 520 trading days, gauged by standard
deviations of daily returns. It takes out the stocks, like Treasury bill ETFs, whose volatility is less than 15
bps, the volatility level at the 10th percentile on this stage. At last with CRSP data, I perform trimming

45Prior works on TSPP also perform similar sampling procedures before conducting empirical analyses (e.g., Chung, Lee,
and Rösch (2020); Rindi and Werner (2019)).

46The U.S.-listed stocks in this paper are defined as the stocks listed one of NYSE, AMEX, NASDAQ, and ARCA
exchanges, identifiable via the Center for Research in Security Prices (CRSP) data. Pilot stocks along with the institu-
tional schedules of TSPP can be accessed through the FINRA’s website: https://www.finra.org/filing-reporting/

archived-pre-pilot-files.
47It is a bit restrictive but necessary because predictors in the proposed ML model, the outcomes for non-pilot stocks„ must

have the identical time indexes for the dependent variable, the outcome for a chosen pilot stock.
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by price level and market capitalization based on Sept. 1, 2016, which is the last trading day before
the pilot stocks are officially determined by FINRA. It restricts the range of both price level and market
capitalization between the lower and upper 1% quantiles, thereby leaving 2,220 stocks that account for
about 65% in the aggregate trading volume over the initial stage. These 2,220 stocks are the baseline
group sorted out at the data processing level.

While there is no permanent dropout among the baseline stocks, when they are matched to NBBO-
sorted quote data, some of the stock-day observations are deleted. The deletions occur partly because I
consider only the trading days on which the first valid NBBO quote, the first quote well-defined in the HJ
algorithm, of a given stock is lying at latest within one hour from the opening bell.48 Other reasons for
the deletions are due to several mismatches between CRSP and NBBO-sorted quote data and exclusion
of early closing trading days.

For each non-pilot stock in the baseline group, I further investigate stationarities on half-hour time
series of the outcomes stock-by-stock. The stationarity tests include random-walk (or unit root) tests
on the pre-intervention periods, standard t-tests on the long-run mean differences between the pre- and
post-intervention periods, and structural break tests on autoregressive model between the two periods.
Based on the intuition that there would be no qualitative difference in dynamics of time series between
the two periods if a non-pilot stock were not affected by TSPP, this time-series investigation will leave
only a set of the stocks showing stable time-series dynamics of the outcomes over the both pre- and
post-intervention periods.

After all, the donor pool for each of the three outcomes, percentage quoted spread, consolidated dis-
played depth, and high-low volatility in order has 1,280, 1,343 and 2,045 member stocks. While this
strategy is a bit conservative in giving out eligibility for donor pools, the resulting groups of the non-
pilot stocks are still large in number to justify the use of ML approaches. The detail of the stationarity
tests are introduced in Appendix C.

Descriptive Statistics

Table 4 offers descriptive statistics of the three outcomes of interest, percentage quoted spread, consol-
idate displayed depth, and high-low volatility. It shows the sample means and sample standard deviations
in parentheses of the outcomes for the stocks sampled following the procedures in Table 2 and Table 3.

[ Table 4 about here ]

First of all, there are quite small differences for all the outcomes between the treatment and control
groups of TSPP in the periods before the policy intervention comes into play. In the post-intervention
periods, however, percentage quoted spread and consolidated displayed depth appear to increase for the
treatment group relative to their changes for the control group. These results are consistent with the
previous findings on TSPP that widely document increases in quoted spread and depth for the stocks in
the treatment groups relative to those in the control group. On the other hand, high-low volatility for the
treatment group turns out to decrease relative to the control group during the post-intervention periods.

Meanwhile, the donor pools show very similar trends with the control group for all the three outcome
though magnitudes of the outcomes differ between them. This is expected to a degree as they both are

48For example, if stock i on trading day t has the first valid NBBO quote at 10:31 AM, then I do not consider trading day t
for stock i but it does not necessarily exclude stock i from the baseline group as stock i may have many other trading days s ̸= t
that have the first valid quote within one hour from the opening bell.
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not explicitly exposed to policy changes by TSPP. Also, the donor pools tend to have lower percentage
quoted spread and high-low volatility, and higher consolidated displayed depth, compared to the pilot
stocks. This is reflective of the differing composition of their respective member stocks in terms of
market capitalization. Remind that the pilot stocks are by construction all small-cap stocks of market
capitalization at largest $3 billion. However, there is no restriction imposed on market capitalization
in constructing donor pools, rendering the donor pools likely composed of the larger market-cap stocks
relative to the TSPP groups.49

5. Empirical Results

This section presents the empirical results gleaned from ML analyses. I first look into ITEs through
test statistics in (9). Next, I study ATE using the ML estimator of panel-data ATE in (10) in comparison
with the results of standard panel-data regressions.

5.1. Individual Stock-Level Treatment Effects (ITE)

Studying ITEs is based on hypothesis testing stock-by-stock, basically counting the pilot stocks sig-
nificantly affected by TSPP. Using the individual testing results, I further investigate cross-sectional
characteristics explaining policy effect heterogeneity among the stocks.

Null Distributions

The test statistics for the stocks in the donor pools draw the null distributions for inference at the
individual stock level. Remind that those stocks are not part of TSPP, delivering the falsification results
that reflect natural possibilities the ML estimator can take in the absence of TSPP in the cross-section.

[ Figure 4 about here ]

Figure 4 shows the null distributions for the three outcomes, percentage quoted spread, consolidated
displayed depth, and high-low volatility. For each outcome, the gray bars describe the histograms of
the test statistics constructed from their respective donor pools. Notably, the null distributions are all
close to normal distributions with mean and variance being the sample means and sample variances of
the test statistics, shown by red dashed lines. This would be the evidence supporting that the proposed
ML procedure is well-designed, where the resulting test statistics, normalized bias-corrected prediction
errors, in the absence of the policy intervention do not show a skewed nor fat-tailed distribution but have
symmetric, bell-shaped distributions centered at zero, analogous to limiting distributions that appear in
typical econometric models. Similar to the standard way, a pilot stock whose test statistics on a given
outcome is relatively large against those null distributions will be judged as the one receiving a significant
policy effect on that outcome.

Testing Stocks-by-Stocks

Figure 5, Figure 6, and Figure 7 show the distributions of the ITE test statistics for percentage quoted

49It is the stylized fact that the larger market capitalization, the better market quality, such as lower quoted spread, higher
depth, and lower volatility, exactly shown for donor pools relatively to the rest of the groups in the table.
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spread, consolidated displayed depth, and high-low volatility, respectively, for the sample stocks in the
treatment groups. In the figures, the gray bars draw histograms for each treatment group, the blue dashed
lines mark the critical values at the 5% significance level, drawn from the null distributions in Figure 4,
and the red dashed line indicates cross-sectional averages of the test statistics.

[ Figure 5, Figure 6, and Figure 7 about here ]

Those figures are concisely portraying how individual stocks are affected by the policy interventions in
light of the null hypothesis. Note that the ITE test statistics are normalized estimates of ITE, which would
deliver a sense of the distribution of ITEs. For percentage quoted spread in Figure 5, the distributions
of the test-statistics between the treatment groups look closely similar from one group to another. In
case of consolidated displayed depth, on the other hand, G3 in Figure 6 draws a bit different shape of
the distribution compared to G1 and G2. To be specific, G3 shows a more clustered distribution around
the mean relative to G1 and G2. This would indicate that there is an additional impact of trade-at-rule
beyond the tick size change on consolidated displayed depth, but such extra impacts would not exist on
percentage quoted spread. The distributions on high-low volatility for all the groups in Figure 7 describe
no significant effect at the individual level due to the policy changes.

[ Table 5 about here ]

Table 5 shows the numerical results of the individual testing. The P < .05 column counts the number
of the sample stocks whose p-values, computed from the null distributions, are less than 0.05. The
PBH < .05 column represents the same testing results but based on the BH procedure with false discovery
rate parameterα= 0.05. Given that there are hundreds of the individual testings involved, I take the latter
as the primary results for the individual testing.

The testing results for percentage quoted spread in Table 5 show that only less than half of the sample
stocks reveal significance of policy effects. On the other hand, consolidated displayed depth turn out to
be extensively significant, having more than 80% of the sample stocks across the treatment groups show
significance at the 5% level. Meanwhile, there are only less than 5% of the sample stocks that receive
significant changes on high-low volatility with inconsistent signs to one another. This essentially implies
that TSPP does not impact on short-term volatility. Collectively, those show that the tick size increase
does not necessarily widen percentage quoted spread but ramp up displayed depth at the NBBO level
without incurring extra short-term volatility.

Discussion on Spillover Effects

I examine the issue of spillover effects, the “treatment effects” spilled over to the control group, at
the individual stock level. Figure 8 draws the distributions of the test statistics for the pilot stocks in the
control group. While there are some that lie in the rejection region at the 5% level, a majority of the
ITE test statistics do not show significance for all the three outcomes. The numerical results in Table 5
confirm it, finding no statistical evidence supporting the presence of the spillover effects at the individual
stock level.

I find those results reasonable given that traders are unlikely to quote in nickel tick size over penny
tick size unless they are enforced to do so. In other words, there is no possible trigger that can lead
“treatment” to the control group and so“treatment effect” to the outcomes for the control group. This
goes against the findings of the prior works that show the presence of spillover effects at the group
level. I suggest two possibilities that they may falsely identify spillover effects. First, a before/after
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average comparison of outcome for the control group, adopted by Chung, Lee, and Rösch (2020) and
Rindi and Werner (2019), is not necessarily causal comparison because of time effects that, if any, prevail
regardless of randomization. For this approach to work properly, researchers must have the full capability
of controlling for all the potential time effects irrelevant to TSPP, which is highly unlikely, especially in
linear models.50 Most of all, it is untestable whether possible confounders in the time dimension are
fully controlled for.51 Further, choice of control variables is often made arbitrarily.

Another approach, adopted by Rindi and Werner (2019), is to form a matched sample of non-pilot
stocks that are similar to those in the control group to run a group-by-group comparison. By design,
however, this approach has a serious identification problem. If there were indeed spillover effects over
the control group, it is highly likely that similar non-pilot stocks also share spillover effects because of
similarity. That is, non-pilot stocks similar to those in the control group of TSPP on key cross-sectional
characteristics would also experience “treatment effects” in the same manner those in the control group
of TSPP are affected. This is on the ground that cross-sectional similarity among the pilot stocks between
the treatment and control groups is often pointed as the source of the spillover effects (e.g., Boehmer,
Jones, and Zhang (2020)).

Policy Effect Heterogeneity

Now I turn to the question of what kinds of individual characteristics can explain differing effects of
the policy interventions in the cross-section. The analysis in the prior subsection shows that treatments
effects among affected pilot stocks are not uniform. To see what underlies it, I employ as an outcome the
results of the individual hypothesis testings and investigate which pre-pilot covariates have predictability
of the treatment effect significance over the post-pilot periods. Notice that I exclude high-low volatility
here, as there were very few of the stocks showing significance at the individual level for this outcome.

I consider a simple cross-sectional Probit model, in which the binary response variable is whether
the ITE test statistics for stock i shows statistical significance at the 5% level, evaluated by PBH < .05
in Table 5. For this binary response outcome, I take tick constrainedness, price level, market capital-
ization, trading volume, and percentage realized spread in the pre-intervention periods as pre-treatment
covariates of interest. This choice is an extension of the prior works on TSPP that have solely focused
on tick constrainedness. Price level, market capitalization, and trading volume are among the most im-
portant cross-sectional characteristics potentially influential on a variety of market quality measures. In
particular, those three covariates are used in forming the strata for random assignment of pilot stocks
at the design stage, which further justifies the inclusion of them as control variables in this regression
model. Percentage realized spread, which measures short-term profits for liquidity provision, is taken to
see whether the increasing tick size indeed gets liquidity providers better off, which is presumed to be
the pre-condition of liquidity improvement for small-cap stocks in the TSPP context.

The definitions of the covariates here are the following. I define tick-constrained stocks as those whose
time-series average of daily time-weighted dollar quoted spread over the pre-intervention periods, Jan.
- Sept. 2016, is less than $0.05 so that the new tick size $0.05 is likely to become a binding constraint
for quoted spread in the post-intervention periods. Percentage realized spread for stock i is the time-
series average of daily volume-weighted percentage realized spread over the pre-intervention periods.52

50Note all the prior works employ linear models, i.e. they also implicitly assumes a linear structure on time effects, which
does not have any theoretical, empirical ground.

51In fact, the difficulty in drawing causal inference from before/after comparison is one of the main reasons relying on RCT.
52I consider three time horizons, 30 seconds, one minute, and five minutes, for percentage realized spread, which are all

21



Price and market capitalization for stock i are based on the time-series averages of the daily values of
opening price over the pre-intervention periods. Similarly, trading volume is the time series average of
daily trading volume in the pre-intervention period. Notably, all those cross-sectional characteristics on
the right hand side of the Probit model are computed only using the information in the pre-intervention
period while the binary response outcome reflects changes of outcomes made in the post-intervention
period.

[ Table 8 about here ]

Table 8 shows the results of the Probit regressions. On top of that, tick constrainedness appears to
explain only significant effects for percentage quoted spread but not for consolidated displayed depth.
This goes against the previous findings that document heterogeneity with respect to tick constrainedness
on a variety of market quality measures including both quoted spread and depth but is consistent with
graphical findings in the previous section. Recall that Figure 6 shows the increases in consolidated
displayed depth are widely observed across the pilot stocks in the treatment groups. A part of the results
would reflect pulling-up effects of price-choice restriction imposed under the nickel tick size. Traders,
who was able to freely choose prices inferior than NBBO by a few pennies before TSPP, are now enforced
to choose only multiples of nickel under TSPP. When their valuations are lower than NBBO within a few
pennies in nickel tick size, thus, it is highly likely that they quote at NBBO rather than doing so at next
nickel ticks, which in turn increases depth at NBBO even if the new tick size is not binding quoted
spread.

On the other hand, percentage realized spread turns out to explain significant effects for both per-
centage quoted spread and consolidated displayed depth. Its accountability survives even controlling for
tick constrainedness, market capitalization, price level and trading volume. This delivers that the lower
percentage realized spread, the more likely is the null hypothesis rejected in the cross-section, indicating
that less-profitable stocks for liquidity providers in the pre-intervention periods are more likely to receive
significant effects in the post-intervention periods. Those results, robust over choice of different short-
term time horizons, would support the basic idea behind TSPP that widening tick size would incentivize
liquidity provision for small-cap stocks through a higher margin.

5.2. Average Treatment Effects

The ML estimator in (10) measures panel-data ATE, which is readily comparable to the ATE estimates
obtained from standard panel-data regressions. Further, using a graphical approach, I look into cross-
sectional ATE over time to see evolution of policy effects during the sample periods. This approach is
particularly useful in breaking down panel-data ATE into the cross-sectional and time-series dimensions.

ML Approach vs. Regression Approach

As benchmark estimates of panel-data ATE, I first estimate ATE using panel-data regressions, which
has been de facto the only empirical approach of the literature on TSPP, and compare estimation results

time-averaged daily. As usual, percentage realized spread with time horizon h for a trade made at time τ is defined as:

Percentage Realized Spreadτ =
2Dτ (Pτ − Mτ+h)

Mτ
× Vτ

where Dτ is the Lee and Ready (1991) buy-sell indicator; Pτ is the transaction price; Mτ is the midpoint of NBBO prevailing
at time τ ; Vτ is the volume-weight of this transaction over the total daily trading shares.
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with those of the ML approach.53 To this end, I consider a fixed-effect panel-data model (12) and DiD
model (13) as follows:

Yi,t = β1G1i × Pilott +β2G2i × Pilott +β3G3i × Pilott +αi +γt +ϵi,t (12)

Yi,t = β1G1i × Pilott +β2G2i × Pilott +β3G3i × Pilott +β4Pilott (13)

+α1G1i +α2G2i +α3G3i + X′
itγ +ϵi,t

where Yi,t is an outcome for stock i in half-hour segment t; Gki, k = 1, 2, 3 is the treatment group indicator
that takes one if stock i belongs to treatment group Gk and zero otherwise; Pilott is the treatment period
indicator that takes one if period t is in the treatment period and zero otherwise;αi and γt are stocks and
periods fixed effects; Xit is a set of covariates that control for preexisting differences of the outcome, if
any, across treatment and control groups. For DiD model (12), I consider three specifications according
to three different sets of controls that have been widely chosen among the prior works: no covariate,
VIX, and VIX and log capitalization. In all panel-data models, I adjust the standard errors clustered by
both stocks and days.54

[ Table 6 about here ]

Table 6 shows the regression results by the four specifications of panel-data regressions for each out-
come, where (M1) is the fixed effect model and (M2), (M3), and (M4) are DiD models with different
choice of controls. In the first place, it is worth noting that the main estimates – the coefficients of
G1i × Pilott, G2i × Pilott, and G3i × Pilott – are essentially the same across all the specifications.
To a degree, this proves TSPP is a well-conducted RCT, supported by the ATE estimates robust against
model specifications.55

Since there is no meaningful difference on the estimates of the parameters of interest across the spec-
ifications, I only focus on (M1) to investigate ATE in the regression framework. The policy changes in
TSPP on average cause 17.77 bps, 14.69 bps, and 14.68 bps increases in percentage quoted spread for
treatment group G1, G2, and G3, respectively. For consolidated displayed depth, there are about 2,154-,
2,075-, and 3,052-share increases for G1, G2, and G3, respectively. Finally, the three treatment groups
G1, G2, and G3 in order show 9.38 bps, 8.55 bps, and 6.41 bps decreases in high-low volatility. Those
are ATE estimates measured relative to the control group.

[ Table 7 about here ]

For comparison, Table 7 presents the ML and panel-data regression estimates side-by-side, where the
regression results are drawn from (M1) in Table 6, which is the fixed-effect panel-data model with only
the treatment indicator dummy variables added to the unit and time fixed effects.56 In short, they are
very close to one another for all the three outcomes across all the three treatment groups. The t-values
on the differences between them indicate that they are statistically indistinguishable.57 In sum, it follows

53Both ML and panel-data regression approaches estimate ATE over the pre- and post-intervention periods, the nine consec-
utive months before and after one-month policy phase-in of Oct. 2016.

54For panel data regressions, I employ reghdfe command in Stata16.
55A RCT produces an unbiased estimate of ATE in expectation, which does not necessarily imply an unbiased estimate of

ATE in practice. It is possible even under randomization that there is unbalance between treatment and control groups and
that an estimate of ATE is contaminated by the preexisting difference between them. In such a case, estimates of ATE can be
sensitive to choice of control variables even under proper randomization. For related discussion, see Deaton and Cartwright
(2018, p. 4).

56Notice that this fixed-effect model nests most of the DiD models adopted in the prior works.
57Alternatively, we can see this from the observation that the ML estimates of ATEs are mostly lying within the 95% confi-
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that when it comes to estimation of ATEs in panel data, the proposed ML approach is as good as the
regression approach, where the former exploits ML predictions to approximate counterfactual while the
latter takes advantages of the RCT design for it. Those results might support the view of Hal R. Varian,
quoted earlier as, “A good predictive model can be better than a randomly chosen control group, which
is usually thought to be the gold standard ((Varian, 2014, p. 24)).” This also would be indirect evidence
supporting credibility of the proposed ML approach.

Overall, the results for percentage quoted spread and consolidated displayed depth with the half-hour
data are consistent with those of a majority of the previous works that investigate similar outcomes with
daily versions of data (e.g., Albuquerque, Song, and Yao (2019); Chung, Lee, and Rösch (2020); Hansen
et al. (2017); Hu et al. (2018); Lin, Swan, and Mollica (2018); Penalva and Tapia (2017); Rindi and
Werner (2019)). For volatility, though, the direction of the average policy effect is the same as Penalva
and Tapia (2017) that uses a close measure of short-term volatility in intraday intervals but the opposite
to Hu et al. (2018) and Rindi and Werner (2019) that approximate volatility over the full day range.
The mixed results on volatility would be partly due to the disagreeing ways of defining volatility among
different papers.

Time-Series Analyses

Now I try to break down the ATE results of panel data into the cross-sectional and time-series di-
mensions using a graphical approach. I look at cross-sectional ATEs day-by-day to trace the evolution
of average policy effects for each treatment group over the sample period. This is to see how the ATE
estimates in panel data are obtained as those are essentially the pooled mean differences in the cross-
sectional and time-series dimensions.

To that end, I define the cross-sectional ATE estimator of RCT for period t as:

ÂTE
RCT
G,t ≡ N−1

G,t ∑
i∈G

Yi,t − N−1
c,t ∑

i∈C
Yi,t (14)

where Yi,t is an outcome for stock i in period t; G and C indicate the treatment and control groups with
the number of member stocks NG,t and NC,t, respectively, in period t. The variance estimator, as the
Neyman variance estimator (see (Athey and Imbens, 2017, p. 89)), is given as:

V̂RCT
G,t ≡ Ŝ2

G,t/NG,t + Ŝ2
C,t/NC,t (15)

where Ŝ2
G,t and Ŝ2

C,t are the sample variances of outcome Yi,t in period t for the control and treatment
groups, respectively.

As a reference, I also consider a ML version of the cross-sectional ATE in a similar manner:

ÃTE
ML
G,t ≡ N−1

G,t ∑
i∈G

∆̂i,t, ∆̂i,t ≡ Yobs
i,t − ŶML

i,t (16)

where Yobs
i,t and ŶML

i,t are observed and predicted outcomes, respectively. Notice that unlike the ML

estimator of panel-data ATE in (10), ÃTE
ML
G,t here is not bias-corrected.

Figure 9, Figure 10, and Figure 11 draw the daily time-series of the cross-sectional ATE estimates of

dence interval of the estimates of the panel-data regressions.
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percentage quoted spread, consolidated displayed depth, and high-low volatility, respectively, for RCT
and ML versions.58 The dotted gray lines draw the 95% confidence intervals of the RCT estimator,
computed day-by-day. The shaded regions represent the one-month policy phase-in period, dividing the
pre- and post-treatment periods.

[ Figure 9, Figure 10, and Figure 11 about here ]

First of all, for the all outcomes across the three groups, there is little aspect of heterogeneity in the
time dimension. While there are some fluctuations, the time-series of the cross-sectional ATE estimates
from RCT appear to be quite stable over time. Those results are expected given that the policy changes
considered in TSPP are those immediately influential time-independently once they start to kick in.

Interestingly, the ML estimator is performing as good as the RCT one despite the fact that it is likely to
be biased in a statistical sense. The ML estimates are mostly lying within the 95% confidence intervals
in the both pre- and post-intervention periods. Those results indirectly explain why the ML approach to
estimation of ATE in the panel data turns out be as good as regression approaches, such as DiD, even as
it does not count on the control group.

[ Figure 12, Figure 13, and Figure 14 about here ]

Exploiting such a ML performance, I also draw quantile values of {∆̂i,t}i∈G day-by-day to project
cross-sectional distributions onto the time dimension. Investigating cross-sectional quantiles over time
is one way of summarizing policy effects in both the cross-sectional and time-series dimensions.

Figure 12, Figure 13, and Figure 14 show the daily time-series of the quantile values at 20%, 40%,
60%, and 80%, along with cross-sectional averages for percentage quoted spread, consolidated displayed
depth, and high-low volatility, respectively. For percentage quoted spread in Figure 12, the times series
of the cross-sectional ATE estimates turns out to be a little skewed toward upper values, as it closely
follows that of the quantile values at 60%. On the other hand, the graph for consolidated displayed depth
in Figure 13 shows that the cross-sectional ATE estimates are mostly driven by large values. The ATE
estimates are very close to the quantile values at 80% for the most of the days. Lastly, the trajectory
of the ATE estimates for high-low volatility in Figure 14 are almost centered in the cross-section. The
time-series of the cross-sectional ATE estimates are lying between the quantile values at 40% and 60%
all the times. Summing up, those graphical analyses reveal that the panel-data estimates of ATEs are
not necessarily average values under symmetry. Skewness is present, which requires researchers to use
caution when taking the ATE estimates in panel data as representative policy-effect metrics for policy
learning.

5.3. ATE vs. ITE

So far, I look into ITE and ATE separately. Interestingly, there is some discrepancy of policy effects
described by ITE and ATE. Most dramatic, the ATE results on high-low volatility show a negative sig-
nificant impact, but individual hypothesis testing results find essentially no effect on it. In particular,
Deaton and Cartwright (2018) and Young (2019) recently point out vulnerability of statistical inference
on ATE in a RCT in the presence of asymmetric ITEs, or outliers. Differing pictures drawn by ATE and
ITE on high-low volatility could be subject to this problem.

58Because the daily frequency is the one readily interpretable in the time-series dimension, I use daily Y and ∆̂ in this
analyses for (14) and (16), respectively, by averaging half-hour values of them on each day per stock.
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To see this, I run fixed-effect panel-data regressions of model (12) under trimming performed at the
stock level. Notice that ML estimates of ITE, ÎTEi in (8), enable to identify which pilot stocks have
extreme values. If the ATE estimates from the panel-data regressions are not driven by extreme values,
then the estimation results shall not be severely affected by trimming. For each outcome, I consider four
cases that exclude from the regression data stocks whose ITE estimates are lying outside (1% , 99%) ,
(2.5%, 97.5%), (5%, 95%), and (10%, 90%). Table 9 shows the relevant regression results.

[ Table 9 about here ]

It turns out that dropping the stocks of extreme values brings about quite large changes in coefficient
estimates. For percentage quoted spread and consolidated displayed depth, exclusion of the stocks at the
lower and upper 5% halves the coefficient estimates for all the treatment groups, as shown in column (4)
in the table, though those changes do not alter hypothesis testing results. As for high-low volatility in the
same column, however, exclusion of the extreme stocks washes out statistical significance. Those results
support the view of Deaton and Cartwright (2018) and Young (2019) discussed above. Once extreme
stocks are removed, the discrepancy of policy effects described between ITE and ATE disappears.

6. Policy Implications

Tick size increase incurs a wealth transfer from liquidity demanders to suppliers. A coarser price
grid likely enables liquidity suppliers to collect a higher margin from market making while liquidity
demanders tend to pay a larger transaction cost because of it. From a policy perspective, then, it would
be the first question whether or not this wealth transfer is rationalizable. If tick size increase does not
improve liquidity as much as it adds up to transaction costs, the policy idea of building up liquidity for
small-cap stocks by means of a tick size increase would lose its ground.

A straightforward approach to this policy question would be weighing differential effects of tick size
increase on quoted spread and depth. An increase in quoted spread reflects an increase in transaction
costs liquidity demanders are required to pay for an improved liquidity environment. On the other hand,
an increase in depth is the output of an improved liquidity environment benefiting liquidity demanders.
If the effect of the latter outweighs that of the former, then this policy idea is, at least, rationalizable. It is
also important to examine whether there is an unintended side effect of tick size increase on the market.
If, for example, the market becomes more volatile due to the tick size increase, then this should be also
taken into account.

This paper carries all the three outcomes in the form of percentage quoted spread, consolidated dis-
played depth, and high-low volatility. Importantly, the distributions of the ITE test statistics, discussed
in the previous section, enable to weigh differing policy effects of the tick size increase on percentage
quoted spread and consolidated displayed depth in a statistical sense. The testing results for Treatment
Group 1 in Table 5 in particular show that more than 83% of the pilot stocks receive significant increases
in consolidated displayed depth due to the tick size increase. On the other hand, only less than half of
them reveal significant increase in percentage quoted spread. Those collectively imply that the tick size
increase does not necessarily lead to increases in percentage quoted spread but improvement in consol-
idated displayed depth is widely observed. Note that consolidated displayed depth used in this paper
only counts displayed depth at NBBO. In turn, the estimated effects on it may convey the lower bound of
the total improvement in depth due to the tick size increase. Counting all the hidden and/or near-NBBO
depth, the total improvement in depth can be greater. Equally important, the results on high-low volatil-
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ity, which measures a short-run volatility, do not present a significant disturbance in link to the tick size
increase. In sum, policy learning of this paper concludes that increasing tick size from penny to nickel
can be an effective way of improving liquidity for small-cap stocks.

7. Concluding Remarks

In this paper, I investigate TSPP, the latest RCT conducted in the U.S stock market. Using a ML
approach, I estimate ITE for pilot stocks and test its significance at the individual stock level to unravel
policy effects beyond ATE. The results of the ML approach show that the tick size increase from one
penny to one nickel under TSPP impacts on percentage quoted spread unevenly across affected pilot
stocks. Only less than half of the pilot stocks show significance. On the other hand, the effects of the tick
size change is comprehensively positive on consolidated displayed depth across affected pilot stocks.
Meanwhile, the tick size change do not significantly affect short-term volatility for almost every pilot
stock, measured by high-low volatility on half-hour intervals. Furthermore, the individual results reveal
no significant spillover effect of policy interventions over the control group.

I also look into individual-specific characteristics to understand differing effects of the tick size change
in the cross-section. Consistent with previous findings in the literature, tick constrainedness in the pre-
intervention periods accounts for policy effect heterogeneity on percentage quoted spread. However,
tick constrainedness lacks of explanatory power for consolidated displayed depth. Percentage realized
spreads in the pre-intervention periods in contrast explain heterogeneous policy effects on the both out-
comes in the cross-section, revealing that the lower percentage realized spread in the pre-intervention
periods, the more likely significantly affected by the tick size change in the post-intervention periods.

In addition, I estimate panel-data ATEs from a ML approach that does not involve the control group of
TSPP at any stage. It shows that ATE estimates drawn from this ML approach are statistically indistin-
guishable from those estimated from popular panel-data regression models that exploit the RCT design.
This result implies that a big-data- and ML-based predictive model can be as good as a RCT approach
for causal inference on ATE, which has long been believed to be the gold standard for casual inference.
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A. Tables

Table 1: Prior Empirical Works on the Tick Size Pilot Program

This table lists prior empirical papers that take the Tick Size Pilot Program as the main or partial theme in their works in the form of
statistical analyses. The first column represents papers by authors along with year lastly updated or published (*). The second column
shows outcome variables utilized by the papers. Definition of variables can be specific paper-by-paper. A typical set of variables are the
following: a) market quality measures: (nominal or percentage) quoted spread, realized spread, effective spread, price impacts, displayed
depth, or the like; b) volatility measures: midquote realized volatility, percentage high-low midquote range; c) market efficiency: proxied
by variance ratios or autocorrelation of short-term returns; d) trading activities: aggregate (share or dollar) trading volume, aggregate
trades, trade size, etc.; e) algorithmic trading proxies: some combinations of counting measures from trading and quoting messages; f)
market shares of trading venues: (share or dollar) trading volume of a certain venue(s) divided by consolidated trading volume. The
third column documents papers’ sample periods corresponding to the periods of statistical analyses. For instance, one-year window
represents the sample period covering one year before and after the policy intervention. The last column shows empirical frameworks
of papers, where a standard two-way fixed-effect model is denoted by difference-in-difference as they essentially represent the identical
parameters of interest.

Papers Outcome Variables Sample Period Empirical Framework

Albuquerque, Song, and Yao (2019) abnormal returns, market quality
measures

Apr. 2016 - Apr. 2017 difference-in-difference

Bartlett and McCrary (2017) market quality measures Mar. 2016 - Jun. 2017 group mean comparisons

Brogaard and Pan (2019) trading volume market shares 120-day window difference-in-difference

Chung, Lee, and Rösch (2020)* market quality, volatility, market effi-
ciency, and trading activity measures

one-year window difference-in-difference

Comerton-Forde, Grégoire, and Zhong
(2019)*

trading volume market shares Sept. 1 - Dec. 2016 difference-in-difference

Cox, Van Ness, and Van Ness (2019)* algorithmic trading proxies, trading
activity measures

30-day window difference-in-difference

Farley, Kelley, and Puckett (2018) market quality, volatility, and market
efficiency measures

20-day window difference-in-difference

Griffith and Roseman (2019)* market quality measures six-week window difference-in-difference

Hansen et al. (2017) market quality, volatility, and trading
activity measures

three-month window difference-in-difference

Hu et al. (2018) market quality, volatility, market effi-
ciency, and trading activity measures

four-month window difference-in-difference

Lee and Watts (2018) algorithmic trading proxies, market
quality and trading activity measures,
etc.

two-year window difference-in-difference

Li, Ye, and Zheng (2019) corporate payout measures eight-quarter window difference-in-difference

Lin, Swan, and Mollica (2018) market quality, volatility, market effi-
ciency, and trading activity measures

two-month window difference-in-difference

Penalva and Tapia (2017) market quality, volatility, and trading
activity measures

Sept. 6 - Nov. 30, 2016 difference-in-difference

Rindi and Werner (2019) market quality, volatility, and trading
activity measures

eight-week window difference-in-difference

Thomas, Zhang, and Zhu (2018) returns eight-quarter window difference-in-difference

Ye, Zheng, and Zhu (2019) Tobin’s q two-year window difference-in-difference
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Table 2: Sample Construction of Pilot Stocks

This table shows the sampling process for pilot stocks based on the official symbol list published on the FINRA’s Tick Size Pilot
Program website. The first column states stock deletion rules with related data sets in brackets; the second through fourth columns
represent the number of pilot stocks and their relative changes in parentheses deducted by the deletion rules; the last column provides
supplementary explanations regarding the deletion rules.

The data sets used in this process are the FINRA’s pilot symbols list data (F1, F2, and F3), daily CRSP, and the half-hour inside
quote (HHIQ), which is based on the NBBO-sorted TAQ quote data with the HJ algorithm in place. F1 contains the official list
of the pilot stocks published by FINRA on Oct. 28, 2016; F2 traces changes of the pilot stocks related to institutional status and
experimental designs over the experimental periods; F3 is similar to F2 but tracks the changes over the pre-pilot periods in Mar. 8 -
Sept. 2, 2016.

Deletion Rules [Data Sets] Control Treatment Treatment Treatment Descriptions
Group Group 1 Group 2 Group 3

Initial assignment in the experiment [F1] 1,196 397 395 395 12 test ticker symbols
excluded.a

Changes in ticker symbols [F2, F3] 1,155 (41) 381 (16) 374 (21) 376 (19) Change code: C or S.

Switching listing exchanges [F2, F3] 1,140 (15) 376 (5) 372 (2) 370 (6) Change code: T or U.

Falling to control group [F2] 1,140 (0) 361 (15) 359 (13) 350 (20) Change code: P

Early dropout [F2] 1,135 (5) 360 (1) 358 (1) 350 (0) Deleted prior to Nov. 1,
2016.

Erroneous or incomplete records [F2] 1,130 (5) 357 (3) 358 (0) 349 (1) Eight symbols not fully
tractable.b

Minimum survival periods [F2] 1,038 (92) 335 (22) 333 (25) 323 (26)
Surviving through Oct.
2017 or longer.

Daily trading volume [CRSP] 5,000-share daily volume
for more than two-thirds of
the trading days in each
sample.

- Training sample 852 (186) 284 (51) 268 (65) 258 (65)
- Post-intervention sample 842 (10) 282 (2) 266 (2) 255 (3)
- Pre-intervention sample 838 (4) 281 (1) 264 (2) 254 (1)

Late starters in the training sample [CRSP] 815 (23) 273 (1) 259 (1) 245 (1)
Having the 1st valid training
day later than Jan. 16.

Poorly matched stocks in data sets [CRSP, HHIQ] 814 (1) 272 (1) 259 (0) 244 (1) Three symbols.c

No valid NBBO quote within one hour [HHIQ] 811 (3) 272 (0) 259 (0) 243 (1) Four symbols.d

Liquidity events (e.g., M&A, public offerings) 810 (1) 272 (0) 257 (2) 242 (1) Four symbols.e

a ATEST, ATEST A, ATEST B, ATEST C, NTEST, NTEST A, NTEST B, NTEST C, ZAZZT, ZBZZT, ZCZZT, ZVZZT.
b AST, FOR, KLDX, NSU, SNOW, TIK, XOXO, XTLY.
c AAMC, ATRI, NWLI.
d DHIL, GHC, MLAB, TPL.
e FGL, FIG, RATE, SRNE.
F1: https://www.finra.org/sites/default/files/Tick_Pilot_Test_Group_Assignments.txt.
F2: http://tsp.finra.org/finra_org/ticksizepilot/TSPilotChanges.txt.
F3: https://www.finra.org/sites/default/files/TSPrePilotChanges_20160902.txt.
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Table 3: Sample Construction of Donor-Pool Stocks

This table shows the sampling process for donor pools. The first column states sampling rules; the second column counts
the number of the stocks and their relative changes in parentheses caused by the sampling rules; the third column represents
relative daily trading volume shares following the sampling process; the last column writes supplementary explanations on
the sampling rules.

Sampling Rules Securities Volume Descriptions
(change) Share (%)

Using CRSP data:

U.S.-listed stocks 8,451 -
Stocks uniquely identified with TSYMBOL and
listed in EXCD = 1, 2, 3, or 4 over the whole
sample period of Jan. 2015 - Jul. 2017.

Non-pilot stocks 5,994 (-2,457) 100.00
Exclude the stocks whose ticker symbols are,
partly or fully, found in the ticker symbol list of
the pilot stocks.

5,000-share trading volume 5,955 (-39) 99.99 Apply 5,000-share cut-off to stocks-days.

Abnormality filters:

- No spilt events 5,480 (-475) 87.60
Exclude the stocks that have a day-to-day change
in either CFACPR or CFACSHR, with exception of
the case of less than 10% overnight returns.

- No excessive overnight returns 5,006 (-474) 81.52
Exclude the stocks that have a more than 30%
overnight return.

- No abrupt change in outstanding
shares

4,552 (-454) 78.44 Exclude the stocks that have a day-to-day change
of more than 50% in SHROUT.

Comparable trading-day sequence 2,331 (-2,221) 72.76

Include only the stocks that have the same
trading-day sequence over the whole sample
period as at least one pilot stock sampled from
Table 2.

Positive volatility 2,307 (-24) 72.58
Exclude the stocks that have standard deviation
of the daily returns over the whole sample period
less than 15 basis points.

Winsorization 2,220 (-88) 64.48

Based on opening price and market capitalization
on Sept. 1, 2016, or the closest last trading day,
include only the stocks whose values of the both
variables lying between the 1% and 99%
quantiles.

Using Daily TAQ quote data, NBBO-sorted by the HJ algorithm:

The first valid NBBO within one
hour from the opening bell 2,220 -

Delete stocks-days that have the first valid NBBO
quote later than 10:00 AM.

Stationary outcomes∗

Percentage quoted spread 1,280 - Include only the stocks that show no sign of
being influenced by the pilot program on time
series of outcomes over pre- and
post-intervention periods.

Consolidated displayed depth 1,343 -

High-low volatility 2,045 -

∗ Stationarity of outcomes is gauged through three tests. The first test is whether outcomes follow a random-walk over
the pre-intervention period; the second is a standard two-sample t-test for the long-run means of outcomes between the
pre- and post-intervention periods; the last one is a structural break test on outcomes fitted to an autoregressive model
between the pre- and post-intervention periods. The stocks showing statistical evidence of following a random-walk
process or rejecting the both nulls of the long-run means and structural breaks tests are excluded from the donor pool for
a given outcome.
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Table 4: Descriptive Statistics

This table shows descriptive statistics of the three outcomes of interest, percentage quoted spread, con-
solidated displayed depth, and high-low volatility. The sample means and sample standard deviations in
parentheses are computed over the three sample periods, training sample (Jan. - Dec. 2015), pre-intervention
sample (Jan. - Sept. 2016), and post-intervention sample (Nov. 2016 - Jul. 2017). The pilot stocks in
either treatment or control group(s) are sampled according to the rules in Table 2, and the donor pools are
constructed following the procedure in Table 3.

Outcomes Control Treatment Treatment Treatment Donor
Group Group 1 Group 2 Group 3 Pools

Percentage Quoted Spread (bps)

Training Period 52.69 48.35 47.33 48.38 15.31
( 78.65) ( 67.97) ( 67.39) ( 69.05) ( 22.20)

Pre-Intervention Period 54.39 51.29 49.87 51.09 16.34
( 83.88) ( 75.16) ( 73.87) ( 78.69) ( 23.77)

Post-Intervention Period 50.23 64.44 59.84 61.44 14.06
( 75.95) ( 70.14) ( 65.65) ( 66.17) ( 20.58)

Consolidated Displayed Depth (shares)

Training Period 636.93 754.75 603.82 738.49 3781.00
(1528.05) (2273.73) (1125.12) (2082.36) (18567.31)

Pre-Intervention Period 629.45 681.78 627.12 683.55 4571.91
(1124.56) (1491.11) (1093.54) (1375.77) (21440.13)

Post-Intervention Period 784.86 2990.71 2860.76 3893.55 5066.17
(1931.35) (6825.19) (5722.33) (10848.51) (29158.74)

High-Low Volatility (bps)

Training Period 82.07 79.57 79.19 76.50 45.82
( 82.46) ( 77.46) ( 76.47) ( 75.27) ( 54.22)

Pre-Intervention Period 86.79 83.02 84.02 81.50 48.97
( 89.80) ( 82.43) ( 84.09) ( 81.32) ( 57.20)

Post-Intervention Period 76.17 62.95 64.76 64.34 37.86
( 76.60) ( 69.00) ( 71.04) ( 70.27) ( 43.34)

36



Table 5: Inference on Individual Treatment Effects

This shows results of statistical inference based on the ITE test statistics (9).
For each pilot stock i, ITE is separately tested one-by-one. The p-value of each
testing, P, is computed against the null distributions, drawn in Figure 4. Also,
in consideration of the multiple testing problem, testing results based on the
Benjamini-Hochberg procedure with false discovery rateα = 0.05 within each
group are reported in PBH .

For the three outcomes of interest, the table counts the number of the pilot
stocks within each group that show statistical significance at 5% level, i.e., p-
values smaller than 0.05, along with percentage of such stocks in parentheses.

N P < .05 PBH < .05

Perecentage Quoted Spread

Treatment Group 1 272 144 (52.94%) 131 (48.16%)

Treatment Group 2 257 124 (48.25%) 112 (43.58%)

Treatment Group 3 242 124 (51.24%) 111 (45.87%)

Control Group 810 113 (13.93%) 27 (3.33%)

Consolidated Displayed Depth

Treatment Group 1 272 230 (84.56%) 228 (83.82%)

Treatment Group 2 257 224 (87.16%) 223 (86.77%)

Treatment Group 3 242 215 (88.84%) 212 (87.60%)

Control Group 810 81 (10.00%) 18 (2.22%)

High-Low Volatility

Treatment Group 1 272 36 (13.24%) 10 (3.68%)

Treatment Group 2 257 29 (11.28%) 10 (3.89%)

Treatment Group 3 242 20 (8.26%) 4 (1.65%)

Control Group 810 64 (7.90%) 15 (1.85%)
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Table 6: Panel Data Regressions

This reports panel-data regression results for percentage quoted spread, consolidated displayed depth, and high-low volatility with half-
hour sample data over the pre-intervention period (9 months; Jan. - Sept. 2016) and the post-intervention period (9 months; Nov.
2016 - Jul. 2017). G1i , G2i , and, G3i are the treatment status indicators for a pilot stock on the three treatment groups – if stock i
belongs to one of the treatment groups, then the corresponding treatment group takes one and zero otherwise; Pilott is the treatment
period indicator that takes one if half-hour time index t is in the post-intervention period and zero otherwise; VIXt is the Chicago Board
Options Exchange’s Volatility Index at opening of each half-hour interval t; Capitalizationi is the market value for stock i, which is
time-invariant, calculated as opening price times the number of outstanding shares based on Jan. 4, 2016, the first trading day in the
regression data.

(M1) represents fixed effect model (12), and (M2), (M3), and (M3) are difference-in-difference models (13) with different choice of
covariates: no covariate, inclusion only of VIX, and inclusion both of VIX and log capitalization. Standard errors are adjusted with
clustering in stocks and dates.

Percentage Quoted Spread Consolidated Displayed Depth High-Low Volatility

(M1) (M2) (M3) (M4) (M1) (M2) (M3) (M4) (M1) (M2) (M3) (M4)

G1i · Pilott 17.77*** 17.31*** 17.32*** 17.54*** 2154.15*** 2153.08*** 2153.05*** 2154.47*** -9.38*** -9.44*** -9.43*** -9.37***
(2.26) (2.19) (2.19) (2.24) (291.28) (290.42) (290.42) (290.53) (1.61) (1.59) (1.59) (1.60)

G2i · Pilott 14.69*** 14.17*** 14.17*** 14.40*** 2075.61*** 2077.52*** 2077.48*** 2078.94*** -8.55*** -8.63*** -8.61*** -8.55***
(2.37) (2.30) (2.30) (2.33) (247.22) (246.63) (246.63) (246.60) (1.51) (1.49) (1.41) (1.49)

G3i · Pilott 14.68*** 14.54*** 14.54*** 14.52*** 3052.89*** 3052.68*** 3052.66*** 3052.50*** -6.41*** -6.52*** -6.51*** -6.52***
(2.51) (2.39) (2.39) (2.45) (537.77) (535.54) (535.54) (535.55) (1.42) (1.41) (1.41) (1.41)

Pilott
-4.14*** 1.51 1.18 155.03*** 104.62*** 102.51*** -10.59*** 7.89*** 7.81***

(1.09) (0.96) (0.99) (24.97) (24.91) (24.94) (1.83) (1.52) (1.51)

VIXt
1.24*** 1.23*** -11.05*** -11.11*** 4.05*** 4.05***
(0.10) (0.10) (1.84) (1.84) (0.23) (0.23)

log(MktCap)i -33.86*** -218.59*** -8.91***
(1.01) (49.31) (0.65)

Unit FE Yes No No No Yes No No No Yes No No No
Time FE Yes No No No Yes No No No Yes No No No
Group FE No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

R̄2 0.4471 0.0039 0.0068 0.2425 0.4139 0.0668 0.0669 0.0700 0.1704 0.0114 0.0389 0.0535

standard errors in parenthesis clustered by stocks and dates
* p<0.05, ** p<0.01, *** p<0.001; Observations: 7,622,914
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Table 7: Average Treatment Effects: ML vs. RCT

This shows estimates of panel-data ATEs for the three treatment groups and their standard errors in parentheses
on the three outcome variables, percentage quoted spread, consolidated displayed depth, and high-low volatility,
obtained from machine learning (ML) and panel-data regression exploiting the RCT design (RCT). The ML
estimator of ATE and its standard errors are defined in (10) and (11). The RCT estimates and their standard
errors are drawn from (M1) in Table 6, a two-way fixed effect panel data model with inclusion of the treatment
indicators only. As reference, t-values for difference of ATEs between ML and REG are reported, computed as
difference of the ATE estimates divided by the sum of their respective standard errors.

Percentage Quoted Spread Consolidated Displayed Depth High-Low Volatility
ML RCT Diff [t-val] ML RCT Diff [t-val] ML RCT Diff [t-val]

ÂTE1 18.64 17.77 0.87 2184.52 2154.15 30.37 -6.83 -9.38 2.55
(2.10) (2.26) [0.20] (283.09) (291.28) [0.05] (1.21) (1.61) [0.90]

ÂTE2 14.95 14.69 0.26 2130.10 2075.61 54.49 -6.09 -8.55 2.46
(2.12) (2.37) [0.06] (239.22) (247.22) [0.11] (1.09) (1.51) [0.95]

ÂTE3 15.12 14.68 0.44 3113.76 3052.89 60.87 -4.11 -6.41 2.3
(2.40) (2.51) [0.09] (520.25) (537.77) [0.06] (0.96) (1.42) [0.97]
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Table 8: Policy Effects Heterogeneity

This summarizes results of analysis of policy effect heterogeneity. It is based on statistical significance
of individual treatment effects for pilot stocks in the treatment groups. Si ∈ {0, 1} takes one if pilot
stock i in the treatment groups shows statistical significance at the 5% level and zero otherwise. Si is
Probit-regressed on individual characteristics Xi . Then, an estimate of partial effect with respect to k-th
characteristic at sample means and its standard error are reported below.

To be specific, a Probit model is given by:

Si = 1{X′
iθ > ui}, ui ∼N (0, 1)

The estimator of the partial effect for continuous variable Xk is defined as:

P̂Ek ≡φ(X̄′
iθ̂)θ̂k , φ(·) : density function of ui

The estimator of the partial effect for binary variable Xk is defined as:

P̂Ek ≡Φ(X̄′
iθ̂)
∣∣
Xk=1 −Φ(X̄′

iθ̂)
∣∣
Xk=0 , Φ(·) : distribution function of ui

Individual characteristics Xi includes the tick constrainedness indicator that takes one if average daily
time-weighted quoted spread for stock i in the pre-intervention period (Jan. - Sept. 2016) is less than
$0.05 and zero otherwise, and several other time-series means as individual-specific characteristics. For
each stock i time-series means are computed over the pre-intervention period on percentage realized
spread measured at various time horizons (30-seconds, one-minutes, and five-minutes), daily market
capitalization (MktCap), daily opening price, and daily trading volume.

Percentage Quoted Spread Consolidated Displayed Depth

Tick Constrained 0.5208*** 0.5309*** 0.5507*** -0.0413 -0.0403 -0.0385
(0.0486) (0.0475) (0.0457) (0.0322) (0.0321) (0.0317)

Percentage Realized -0.0123*** -0.0024**
Spread (30-sec; bps) (0.0030) (0.0008)

Percentage Realized -0.0115*** -0.0025**
Spread (1-min; bps) (0.0031) (0.0008)

Percentage Realized -0.0095*** -0.0027**
Spread (5-min; bps) (0.0031) (0.0009)

log(MktCap) 0.0071 0.0138 0.0258 0.0167 0.0181 0.0210
(0.0402) (0.0401) (0.0388) (0.0175) (0.0174) (0.0173)

log(Volume) 0.0722 0.0804* 0.1040* 0.0634*** 0.0637*** 0.0648***
(0.0371) (0.0368) (0.0355) (0.0153) (0.0153) (0.0151)

1/Price 1.8643** 1.7371** 1.3641** 0.4656* 0.4790* 0.4983*
(0.5993) (0.5924) (0.5648) (0.2233) (0.2265) (0.2282)

Group 2 -0.0540 -0.0533 -0.0538 0.0202 0.0203 0.0197
(0.0532) (0.0533) (0.0534) (0.0244) (0.0244) (0.0244)

Group 3 -0.0452 -0.0435 -0.0427 0.0427 0.0430 0.0430
(0.0549) (0.0550) (0.0551) (0.0229) (0.0229) (0.0230)

* p<0.05, ** p<0.01, *** p<0.001; N = 771
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Table 9: Panel-Data Regressions under Trimming

This reports regression results of the stock-day fixed-effect panel-data model with trimmed
half-hour sample data for three outcomes, percentage quoted spread, consolidated displayed
depth, and high-low volatility over the pre-intervention period (9 months; Jan. - Sept. 2016)
and the post-intervention period (9 months; Nov. 2016 - Jul. 2017). G1i , G2i , and, G3i
are the treatment status indicators for a pilot stock on the three treatment groups – if stock
i belongs to one of the treatment groups, then the corresponding treatment group takes
one and zero otherwise; Pilott is the treatment period indicator that takes one if half-hour
time index t is in the post-intervention period and zero otherwise. The columns (1) - (5)
represent different choice of trimming parameters. Model (1) shows the regression results
without trimming, serving as the benchmark; Model (2) to (5) contain the regression results
from trimmed data, where (α, 1 −α) indicate that stocks whose ML estimate of ITE lying
outsideα and 1 −α percentiles are dropped out of the regression data. Fixed effects are put
in place for both stocks and dates, and standard errors in parentheses are clustered by both
stocks and dates as well.

(1) (2) (3) (4) (5)
No Trim (1%, 99%) (2.5%, 97.5%) (5%, 95%) (10%, 90%)

A. Percentage Qutoed Spread

G1i × Pilott 17.77∗∗∗ 12.16∗∗∗ 9.82∗∗∗ 7.77∗∗∗ 5.19∗∗∗

(2.26) (1.75) (1.46) (1.14) (1.01)

G2i × Pilott 14.69∗∗∗ 10.16∗∗∗ 8.31∗∗∗ 7.09∗∗∗ 3.86∗∗∗

(2.37) (1.83) (1.34) (1.13) (0.99)

G3i × Pilott 14.68∗∗∗ 11.44∗∗∗ 9.41∗∗∗ 7.93∗∗∗ 5.42∗∗∗

(2.51) (1.79) (1.50) (1.24) (0.87)

R̄2 0.4471 0.4455 0.4510 0.4567 0.4636
Observations 7,622,914 7,358,294 6,965,250 6,298,848 5,069,891

B. Consolidated Displayed Depth

G1i × Pilott 2154.15∗∗∗ 1591.95∗∗∗ 1146.80∗∗∗ 1047.53∗∗∗ 703.53∗∗∗

(291.28) (156.83) (84.79) (65.90) (42.96)

G2i × Pilott 2075.61∗∗∗ 1714.10∗∗∗ 1288.06∗∗∗ 997.91∗∗∗ 674.23∗∗∗

(247.22) (164.31) (106.61) (69.01) (40.22)

G3i × Pilott 3052.89∗∗∗ 2152.46∗∗∗ 1447.08∗∗∗ 971.01∗∗∗ 713.81∗∗∗

(537.77) (210.40) (119.14) (68.31) (45.01)

R̄2 0.4139 0.3592 0.3279 0.2921 0.2397
Observations 7,622,914 7,540,273 7,336,290 7,042,490 6,226,148

C. High-Low Volatility

G1i × Pilott -9.38∗∗∗ -4.68∗∗∗ -2.41∗ -1.94 -0.36
(1.61) (1.26) (1.13) (1.05) (0.91)

G2i × Pilott -8.55∗∗∗ -5.14∗∗∗ -3.28∗∗ -0.69 0.34
(1.51) (1.31) (1.24) (1.08) (1.01)

G3i × Pilott -6.41∗∗∗ -4.33∗∗∗ -2.11 -1.24 0.29
(1.42) (1.27) (1.14) (1.04) (0.96)

R̄2 0.1704 0.1788 0.1815 0.1841 0.1909
Observations 7,622,914 7,314,101 6,886,315 6,147,205 4,909,678

standard errors in parentheses clustered by stocks and dates
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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B. Figures

Figure 1: Randomized Controlled Trials in Applied Microeconomics

This figure, drawn from Currie, Kleven, and Zwiers (2020), shows the fraction of papers referring to
randomized control trials. It counts applied microeconomics research papers among all of the National
Bureau of Economic Research working papers between January 1, 1980 and June 30, 2018, and all the
papers published in the top five academic journals (American Economic Review, Econometrica, Journal
of Political Economy, Quarterly Journal of Economics, and Review of Economic Studies) between Jan-
uary 1, 2004 and August 2019.
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Figure 2: Big Data and Machine Learning in Applied Microeconomics

A. Big Data

B. Machine Learning

Those figures, drawn from Currie, Kleven, and Zwiers (2020), show the fraction of papers referring to
big data and machine learning. They counts applied microeconomics research papers among all of the
National Bureau of Economic Research working papers between January 1, 1980 and June 30, 2018,
and all the papers published in the top five academic journals (American Economic Review, Economet-
rica, Journal of Political Economy, Quarterly Journal of Economics, and Review of Economic Studies)
between January 1, 2004 and August 2019.
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Figure 3: Sample Periods

Jan. 2, 2015 Dec. 31, 2015

Training Sample, Ptr

(12 months)

Jan. 2
2016

Sept. 30
2016

Nov. 1
2016

Jul. 29
2017

Pre-Intervention Sample, Ppre Post-Intervention Sample, Ppost

Policy Phase-in
(Oct. 2016)

(9 months) (9 months)
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Figure 4: The Null Distributions

A. Percentage Quoted Spread

B. Consolidated Displayed Depth

C. High-Low Volatility

The figures show the distributions of the ITE test statistics, defined in (9), for the
stocks in the donor pool, where the lower and upper 0.5% of the individual estimates
are trimmed out beforehand. The histograms drawn by the gray bars represent the null
distribution for each of percentage quoted spread, consolidated displayed depth, and
high-low volatility. The red dotted lines are the normal distributions whose mean and
variance are obtained from the individual estimates.
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Figure 5: Distribution of ITEs: Percentage Quoted Spread

A. Group 1

B. Group 2

C. Group 3

The figures show the distributions of the ITE test statistics, defined in (9), for percent-
age quoted spread for the sample stocks in the three treatment groups. The histograms
drawn by the gray bars represent the distributions of the ML estimates. The blue dotted
vertical lines indicate critical values at the two-sided 5% significance level, computed
from the corresponding null distributions in Figure 4.
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Figure 6: Distribution of ITEs: Consolidated Displayed Depth

A. Group 1

B. Group 2

C. Group 3

The figures show the distributions of the ITE test statistics, defined in (9), for con-
solidated displayed depth for the sample stocks in the three treatment groups. The
histograms drawn by the gray bars represent the distributions of the ML estimates.
The blue dotted vertical lines indicate critical values at the two-sided 5% significance
level, computed from the corresponding null distributions in Figure 4.
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Figure 7: Distribution of ITEs: High-Low Volatility

A. Group 1

B. Group 2

C. Group 3

The figures show the distributions of the ITE test statistics, defined in (9), for high-low
volatility for the sample stocks in the three treatment groups. The histograms drawn
by the gray bars represent the distributions of the ML estimates. The blue dotted
vertical lines indicate critical values at the two-sided 5% significance level, computed
from the corresponding null distributions in Figure 4.
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Figure 8: Distribution of Individual Spillover Effects

A. Percentage Quoted Spread

B. Consolidated Displayed Depth

C. High-Low Volatility

The figures show the distributions of the ITE test statistics, defined in (9), for the
three outcomes, percentage quoted spread, consolidated displayed depth, and high-
low volatility, for the sample stocks in the control group. For each outcome, the
histograms drawn by the gray bars represent the distributions of the ML estimates..
The blue dotted vertical lines indicate critical values at the two-sided 5% significance
level, computed from the corresponding null distributions in Figure 4.
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Figure 9: Time-Series of ATE Estimates: Percentage Quoted Spread

A. Group 1

B. Group 2

B. Group 3

The figures show daily time series of cross-sectional average treatment effects for each
treatment group in TSPP. The red solid lines show the RCT estimates (14) and gray
dotted lines indicate their 95% confidence intervals on variance estimates (15) under
normal approximation. The blue solid lines represent the ML estimates (16), which
do not employ a control group in the conventional sense.
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Figure 10: Time-Series of ATE Estimates: Consolidated Displayed Depth

A. Group 1

B. Group 2

B. Group 3

The figures show daily time series of cross-sectional average treatment effects for each
treatment group in TSPP. The red solid lines show the RCT estimates (14) and gray
dotted lines indicate their 95% confidence intervals on variance estimates (15) under
normal approximation. The blue solid lines represent the ML estimates (16), which
do not employ a control group in the conventional sense.
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Figure 11: Time-Series of ATE Estimates: High-Low Volatility

A. Group 1

B. Group 2

B. Group 3

The figures show daily time series of cross-sectional average treatment effects for each
treatment group in TSPP. The red solid lines show the RCT estimates (14) and gray
dotted lines indicate their 95% confidence intervals on variance estimates (15) under
normal approximation. The blue solid lines represent the ML estimates (16), which
do not employ a control group in the conventional sense.
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Figure 12: Time-Series of Quantiles: Percentage Quoted Spread

A. Group 1

B. Group 2

B. Group 3

The figures show daily time-series of cross-sectional quantile policy effects by the
treatment groups. The policy-effect estimates on each group based on the ML predic-
tion errors, {∆̂i,t}i∈G in (16), are computed day-by-day. The bluish lines represent
quantile values at 80%, 60%, 40% and 20% from top to bottom. The red line draws
daily average values.
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Figure 13: Time-Series of Quantiles: Consolidated Displayed Depth

A. Group 1

B. Group 2

B. Group 3

The figures show daily time-series of cross-sectional quantile policy effects by the
treatment groups. The policy-effect estimates on each group based on the ML predic-
tion errors, {∆̂i,t}i∈G in (16), are computed day-by-day. The bluish lines represent
quantile values at 80%, 60%, 40% and 20% from top to bottom. The red line draws
daily average values
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Figure 14: Time-Series of Quantiles: High-Low Volatility

A. Group 1

B. Group 2

B. Group 3

The figures show daily time-series of cross-sectional quantile policy effects by the
treatment groups. The policy-effect estimates on each group based on the ML predic-
tion errors, {∆̂i,t}i∈G in (16), are computed day-by-day. The bluish lines represent
quantile values at 80%, 60%, 40% and 20% from top to bottom. The red line draws
daily average values
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C. Technical Details in Data Processing

C.1. The Half-Hour Version of National Best Bid and Offer (NBBO)

Daily TAQ quote data simply show updates of best quotes on individual exchanges in chronological
order. That said, they do not immediately deliver NBBO, dynamically adjusted upon arrival of the new
updates across local markets in the U.S. Thus, the use of Daily TAQ quote data requires running a sorting
process to produce NBBO at each quote update in Daily TAQ quote data. The core principle in the NBBO
processing is to find the maximum (minimum) among the locally highest (lowest) bids (offers) at each
second of the quote updates in the data. I conduct this NBBO processing for all the U.S.-traded stocks
over the whole sample period with the filtering rules drawn from the HJ algorithm. After that, I perform
time-averaging on the NBBO-sorted quote data for each stock on each trading day over every half-hour
interval during the regular training session, excluding the first and last five minutes, i.e., the first and last
half-hour intervals span over 9:35 - 10:00 AM and 3:30 - 3:55 PM rather than 9:30 - 10:00 AM and 3:30
- 4:00 PM, respectively.59 In doing so, I also compute the highest and lowest midquotes of NBBO on
each half-hour interval.

Importantly, there have been a few occasions at the stocks-days level that the first valid half-hour
interval is not the one starting from 9:35 AM. In principle, all the stocks are expected to have the full 13
half-hour intervals on any given trading day between 9:35 AM and 3:55 PM. Because of the nature of the
quote data, if there is an initial update around the opening bell, the corresponding stock must have the
full 13 intervals, regardless of whether there is a trade executed or not. Though, this is not always case
because the HJ algorithm filters out certain quotes, possibly placed around the opening bell, considered
as wrongly recorded, deleting observations in raw Daily TAQ quote data and so making some stocks on
certain days have the first valid half-hour interval from the second interval, i.e., the half-hour interval
starting from 10:00 AM. However, these are rare incidents, and I only include stocks-days that have the
first valid half-hour interval at latest starting from the second to exclude late starters.

There are a couple of remarks on this data processing. First, NBBO is a dynamic concept. Unlike to
trades which are a static concept only meaningful at the time of the events, a NBBO update is considered
as valid until a new update arrives. Thus, time-averaging over a predetermined length of time does
not erase the original interpretation of NBBO while offering readily a synchronized data structure in
panel data. Secondly, compared to the prior works that perform time-averaging over full trading days
and so average out all the potentially interesting intraday variations, this paper keeps intraday activities
to a meaningful degree, taking richer information into consideration in dealing with the similar research
questions. Importantly, the use of the intraday frequency is reflective of the literature that has long looked
into intraday patterns on liquidity and volatility measures (e.g., Chung, Van Ness, and Van Ness (1999);
Foster and Viswanathan (1993); Lin, Sanger, and Booth (1995); Madhavan, Richardson, and Roomans
(1997); McInish and Wood (1992); Stoll and Whaley (1990)). In addition, the information set of the
half-hour time-averaged data nests that of the daily time-averaged data given that an averaged outcome
over the half-hour intervals on a trading day are the daily version on that day.

59Dropping the first and last five minutes is to avoid potential contamination from the call auction process around the opening
and closing bells
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C.2. Stationarity Test for Construction of Donor pools

For a given stock, I first trim out the time series of its outcome at the lower and upper 1% quantiles over
the pre- and post-intervention sessions separately. This is to avoid the impact of outliers. Also, before
running the tests, I conduct a preliminary filtering on the time-series by taking orthogonal projection.
This is to reflect the possibility that certain portions of the time series variation are driven by some
known factors that are apparently exogenous of TSPP. If the stationarity tests are performed without
factoring out those variations, they can mistakenly rule out the stock that fails to survive in the tests
because of the variations induced by the known factors but not presence of intervened effects from
TSPP. For it, I regress the time series on VIX and half-hour interval fixed effects dummy variables that
approximate such known factors, and take the residuals. Finally, I run stationarity tests on the residuals
for each stock, where stationarity tests include a random walk test in the pre-intervention period, a long-
run mean difference test between the pre- and post-intervention periods, and structural break tests on an
autoregressive model between the pre- and post-intervention periods.

The random-walk test is based on the simplest specification including only the lagged term. If the
time-series follows a random walk in the pre-intervention periods, it cannot serve as a valid predictor
in the proposed ML procedure. The two-sample long-run mean t-test looks at the standard t-value on
the difference of the time-series sample means between the pre- and post-intervention periods divided
by the standard errors, where the standard errors are computed from the Newey-West variance estimator
with a well-known rule-of-thumb truncation parameter mk = 0.75 × T1/3

k , k ∈ {pre, post} in place. If
the long-run means between the two periods are highly different, then it may signal that the outcome of
the stock is significantly affected by the policy intervention under TSPP. Lastly, the structural break test
examines possible breaks on the dynamics of the outcome across the pre- and post-intervention periods.
For it, I fit the residuals obtained from the prelininary regression to the AR (38) model for the pre- and
post- intervention samples, where the 38-lag choice reflects potential persistence of the information up
the three consecutive trading days, 13 intervals × 3 days − 1 lag = 38. Then, I construct a Wald-statistics
excluding the constant term, and carry out the Chi-square test for the potential structural break between
the two periods.60

With all the three test results for each outcome at hand, I first exclude the stocks on which I cannot
reject at the 5% signficance level the null that the time-series of their outcomes follows a random walk.
Among those that reject the null, I further exclude the stocks that show statistical significance at the 1%
level on the both long-run mean differences and structural break tests. Subsequently, the donor pool
for each of the three outcomes, percentage quoted spread, consolidated displayed depth, and high-low
volatility, in order has 1,280, 1,343 and 2,045 member stocks.

60Bruce E. Hansen provides an excellent summary of popular structural break tests in the time-series literature,
including the Chi-squared-based test I adopted in this paper. The related slides are available on his website at
https://www.ssc.wisc.edu/∼bhansen/crete/crete5.pdf.
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